好忘方改善AD模型小鼠认知障碍及机制研究

郭小燕, 张海楼, 夏宝妹, 陶伟伟, 李文佳, 徐联调, 沈琴琴, 邹之璐, 陈刚

郭小燕, 张海楼, 夏宝妹, 陶伟伟, 李文佳, 徐联调, 沈琴琴, 邹之璐, 陈刚. 好忘方改善AD模型小鼠认知障碍及机制研究[J]. 南京中医药大学学报, 2020, 36(6): 831-836.
引用本文: 郭小燕, 张海楼, 夏宝妹, 陶伟伟, 李文佳, 徐联调, 沈琴琴, 邹之璐, 陈刚. 好忘方改善AD模型小鼠认知障碍及机制研究[J]. 南京中医药大学学报, 2020, 36(6): 831-836.
GUO Xiao-yan, ZHANG Hai-lou, XIA Bao-mei, TAO Wei-wei, LI Wen-jia, XU Lian-tiao, SHEN Qin-qin, ZOU Zhi-lu, CHEN Gang. Haowang Formula Improved Cognitive Impairment in AD Mice Models and Related Mechanism[J]. Journal of Nanjing University of traditional Chinese Medicine, 2020, 36(6): 831-836.
Citation: GUO Xiao-yan, ZHANG Hai-lou, XIA Bao-mei, TAO Wei-wei, LI Wen-jia, XU Lian-tiao, SHEN Qin-qin, ZOU Zhi-lu, CHEN Gang. Haowang Formula Improved Cognitive Impairment in AD Mice Models and Related Mechanism[J]. Journal of Nanjing University of traditional Chinese Medicine, 2020, 36(6): 831-836.

好忘方改善AD模型小鼠认知障碍及机制研究

Haowang Formula Improved Cognitive Impairment in AD Mice Models and Related Mechanism

  • 摘要: 目的 探讨好忘方(HWF)对阿尔茨海默病(AD)模型小鼠认知障碍改善作用及其与PKA介导的磷酸化TAU的清除和突触可塑性的增强的关系。方法 选用东莨菪碱小鼠模型和SAMP8小鼠模型,分别给予1周和3周的药物治疗,分为空白对照组(CTL)、模型对照组(Veh)、好忘方组和多奈哌齐组(Donepezil)。给药结束后通过Morris水迷宫(MWM)和新物体识别(NOR)检测小鼠的认知水平。Western blot检测SAMP8小鼠各组海马中PKA-GSK3β-TAU通路与PKA-CREB及其下游SYNAPSIN1、GLUR1、PSD95、BDNF的蛋白水平变化。结果 东莨菪碱模型下给药1周后,Morris水迷宫测试中,好忘方组和多奈哌齐组站台穿越次数与模型对照组相比明显增多(P<0.01)。SAMP8模型下给药3周后,好忘方和多奈哌齐逆转了SAMP8小鼠MWM逃避潜伏期的增加,站台穿越次数及NOR指数的减少(P<0.01),激活PKA-GSK3β-TAU通路降低了TAU-Ser404蛋白水平(P<0.01),并逆转了SAMP8小鼠海马中PKA-CREB及其下游BDNF和突触蛋白SYNAPSIN1、GLUR1、PSD95蛋白水平的下降(P<0.05~0.01)。且好忘方能够逆转SAMP8小鼠MWM目标象限路程比的下降(P<0.05),并在改善MWM逃避潜伏期方面优于多奈哌齐(P<0.05)。结论 好忘方可改善AD模型小鼠认知障碍,这与PKA介导的磷酸化TAU的清除和突触可塑性的增强密切相关。
    Abstract: OBJECTIVE To assess the effect of Haowang Formula (HWF) in treating Alzheimer's disease (AD) cognitive impairment using scopolamine mice model and senescence accelerated mice P8 (SAMP8) model, and investigated the underlying mechanism centered on PKA-mediated clearance of phosphorylated TAU and enhancement of synaptic plasticity. METHODS Mice were randomly divided into 4 groups in both models: Control group(CTL), Model group (Veh), Haowang Formula group and Donepezil group (Donepezil). Morris water maze (MWM) and novel object recognition test (NOR) were used to evaluate the cognitive ability of mice. Western Blot was used to detect the protein levels in PKA-GSK3β-TAU, PKA-CREB and its downstream molecule BDNF and synaptic proteins including SYNAPSIN1, GLUR1, and PSD95 in the hippocampus of SAMP8. RESULTS Under scopolamine model, compared to Model group, HWF and Donepezil distinctly improved times of crossing the platform in Morris water maze. Under SAMP8 model, both HWF and donepezil displayed therapeutic effect on escape latency and times of crossing the platform in MWM, and new object recognition index in NOR (P<0.01). However, HWF increased distance in target quadrant and showed better treatment effect on shortening escape latency than donepezil (P<0.01). In hippocampus of SAMP8 mice, HWF distinctly reduced the protein levels of TAU-ser404 by activating PKA-GSK3β-TAU pathway (P<0.01). It also reversed the down-regulation of PKA-CREB and its downstream molecule BDNF and synaptic proteins including SYNAPSIN1, GLUR1, and PSD95 (P<0.05,P<0.01). CONCLUSION HWF can improve cognitive impairment in AD mice models, which is related to PKA-mediated clearance of phosphorylated TAU and enhancement of synaptic plasticity.
  • [1] 史晓雪, 唐世琪. 阿尔茨海默病的治疗方法研究进展[J]. 职业与健康, 2018, 34(1): 134-137.
    [2] PINZ MP, DOS REIS AS, VOGT AG, et al. Current advances of pharmacological properties of 7-chloro-4-(phenylselanyl) quinoline: Prevention of cognitive deficit and anxiety in Alzheimer's disease model[J]. Biomed Pharmacother, 2018, 105: 1006-1014.
    [3] WINSLOW BT, ONYSKO MK, STOB CM, et al. Treatment of Alzheimer disease[J]. Am Fam Physician, 2011,83(12):1403-1412.
    [4] GARCIA-OSTA A, CUADRADO-TEJEDOR M, GARCIA-BARROSO C, et al. Phosphodiesterases as therapeutic targets for Alzheimer's disease[J]. ACS Chem Neurosci, 2012, 3(11): 832-844.
    [5] EFTHYMIOUA G, GOATE AM. Late onset Alzheimer's disease genetics implicates microglial pathways in disease risk[J]. Mol Neurodegeneration, 2017, 12: 43.
    [6] WU XL, PINA-CRESPO J, ZHANG YW, et al. Tau-mediated neurodegeneration and potential implications in diagnosis and treatment of Alzheimer's disease[J]. Chin Med J, 2017, 130(24): 2978-2990.
    [7] LIU Q, WANG SC, DING K. Research advances in the treatment of Alzheimer's disease with polysaccharides from traditional Chinese medicine[J]. Chin J Nat Med, 2017, 15(9): 641-652.
    [8] JESKY R, CHEN H. The neuritogenic and neuroprotective potential of senegenin against Aβ-induced neurotoxicity in PC 12 cells[J]. BMC Complement Altern Med, 2016, 16: 26.
    [9] LYU J, JIA H, JIANG Y, et al. Tenuifolin, an extract derived from tenuigenin, inhibits amyloid-β secretionin vitro[J]. Acta Physiol, 2009, 196(4): 419-425.
    [10] MAO JX, HUANG SC, LIU SF, et al. A herbal medicine for Alzheimer's disease and its active constituents promote neural progenitor proliferation[J]. Aging Cell, 2015, 14(5): 784-796.
    [11] 王欣, 刘静. 孙思邈治“好忘”方特点浅析[J]. 山东中医药大学学报, 2000, 24(2): 93-94.
    [12] TRACY TE, GAN L. Acetylated tau in Alzheimer's disease: An instigator of synaptic dysfunction underlying memory loss: Increased levels of acetylated tau blocks the postsynaptic signaling required for plasticity and promotes memory deficits associated with tauopathy[J]. Bioessays, 2017, 39(4):1-9.
    [13] WU XL, PINA-CRESPO J, ZHANG YW, et al. Tau-mediated neurodegeneration and potential implications in diagnosis and treatment of Alzheimer's disease[J]. Chin Med J (Engl), 2017, 130(24): 2978-2990.
    [14] 胡慧, 王平, 孔明望, 等. 阿尔茨海默病模型大鼠Tau蛋白异常磷酸化表达及补肾化痰法的干预作用[J]. 时珍国医国药, 2010, 21(10): 2681-2683.
    [15] CUBINKOVA V, VALACHOVA B, UHRINOVA I, et al. Alternative hypotheses related to Alzheimer's disease[J].Bratislava Med J, 2018, 119(4): 210-216.
    [16] KANDEL ER. The molecular biology of memory: CAMP, PKA, CRE, CREB-1, CREB-2, and CPEB[J]. Mol Brain, 2012, 5(1): 14.
    [17] ZHANG Y, MARH, LI XC, et al. Silencing I2PP2A rescues tau pathologies and memory deficits through rescuing PP2A and inhibiting GSK-3β signaling in human tau transgenic mice[J]. Front Aging Neurosci, 2014, 6: 123.
    [18] SUZUKI A, FUKUSHIMA H, MUKAWA T, et al. Upregulation of CREB-mediated transcription enhances both short- and long-term memory[J].J Neurosci, 2011, 31(24): 8786-8802.
    [19] CHEN Y, HUANG X, ZHANG YW, et al. Alzheimer's β-secretase (BACE1) regulates the cAMP/PKA/CREB pathway independently of β-amyloid[J]. J Neurosci, 2012, 32(33): 11390-11395.
    [20] SANDHYA VK, RAJU R, VERMA R, et al. A network map of BDNF/TRKB and BDNF/p75NTR signaling system[J]. J Cell Commun Signal, 2013, 7(4): 301-307.
    [21] VOINESKOS AN, LERCH JP, FELSKY D, et al. The brain-derived neurotrophic factor Val66Met polymorphism and prediction of neural risk for Alzheimer disease[J]. Arch Gen Psychiatry, 2011, 68(2): 198-206.
    [22] GUO HB, CHENG YF, WANG CM, et al. FFPM, a PDE4 inhibitor, reverses learning and memory deficits in APP/PS1 transgenic mice via cAMP/PKA/CREB signaling and anti-inflammatory effects[J]. Neuropharmacology, 2017, 116: 260-269.
    [23] 彭英, 李萍萍, 李琳, 等. 抗阿尔茨海默病药物临床研究进展[J]. 药学学报, 2016, 51(8): 1185-1195.
    [24] 汪惠琳, 徐清清, 郑国庆. 精神疾病治疗进展(四): 阿尔茨海默病[J]. 医药导报, 2017, 36(10): 1148-1152.
    [25] KLINKENBERG I, BLOKLAND A. The validity of scopolamine as a pharmacological model for cognitive impairment: A review of animal behavioral studies[J]. Neurosci Biobehav Rev, 2010, 34(8): 1307-1350.
    [26] SCHLIEBS R, ARENDT T. The cholinergic system in aging and neuronal degeneration[J].Behav Brain Res, 2011, 221(2): 555-563.
    [27] CHENG XR, ZHOU WX, ZHANG YX. The behavioral, pathological and therapeutic features of the senescence-accelerated mouse prone 8 strain as an Alzheimer's disease animal model[J]. Ageing Res Rev, 2014, 13: 13-37.
    [28] PALLAS M, CAMINS A, SMITH MA, et al. From aging to Alzheimer's disease: Unveiling “the switch” with the senescence-accelerated mouse model (SAMP8)[J]. J Alzheimer's Dis, 2008, 15(4): 615-624.
    [29] TUCKER LB, VELOSKY AG, MCCABE JT. Applications of the Morris water maze in translational traumatic brain injury research[J]. Neurosci Biobehav Rev, 2018, 88: 187-200.
    [30] PAN WS, HAN S, KANG L, et al. Effects of dihydrotestosterone on synaptic plasticity of theHippocampus in mild cognitive impairment male SAMP8 mice[J]. Exp Ther Med, 2016, 12(3): 1455-1463.
    [31] ZHANG ZX, ZHAO RP, WANG DS, et al. Fuzhisan ameliorates the memory deficits in aged SAMP8 mice via decreasing aβ production and tau hyperphosphorylation of theHippocampus[J]. Neurochem Res, 2016, 41(11): 3074-3082.
    [32] ZHANG SJ, LUO D, LI L, et al. Ethyl acetate extract components of bushen-Yizhi formula provides neuroprotection against scopolamine-induced cognitive impairment[J]. Sci Rep, 2017, 7(1): 9824.
    [33] SHI YH, HUANG WY, WANG Y, et al. Bis(9)-(-)-Meptazinol, a novel dual-binding AChE inhibitor, rescues cognitive deficits and pathological changes in APP/PS1 transgenic mice[J]. Transl Neurodegener, 2018, 7: 21.
    [34] ZHOU W, ZHONG G, FU S, et al. Microglia-based phenotypic screening identifies a novel inhibitor of neuroinflammation effective in Alzheimer's disease models[J]. ACS Chem Neurosci, 2016, 7(11): 1499-1507.
    [35] EVANS DB, RANK KB, BHATTACHARYA K, et al. Tau phosphorylation at serine 396 and serine 404 by human recombinant tau protein kinase Ⅱ inhibits tau's ability to promote microtubule assembly[J]. J Biol Chem, 2000, 275(32): 24977-24983.
    [36] IQBAL K, GRUNDKE-IQBAL I. Ubiquitination and abnormal phosphorylation of paired helical filaments in Alzheimer's disease[J]. Mol Neurobiol, 1991, 5(2/3/4): 399-410.
    [37] BOLAND B, YUWH, CORTI O, et al. Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing[J]. Nat Rev Drug Discov, 2018, 17(9): 660-688.
    [38] AVILA J. Tau phosphorylation and aggregation in Alzheimer's disease pathology[J]. FEBS Lett, 2006, 580(12): 2922-2927.
    [39] BRAIDY N, ESSA MM, POLJAK A, et al. Consumption of pomegranates improves synaptic function in a transgenic mice model of Alzheimer's disease[J]. Oncotarget, 2016, 7(40): 64589-64604.
  • 期刊类型引用(6)

    1. 彭翠玲,樊佳丽,余天,卢梦娇,赵文龙,张敬华. 中医药干预神经发生治疗阿尔茨海默病研究进展. 中医学报. 2025(03): 569-575 . 百度学术
    2. 张彩霞,周泰冰,接琳琳,卢强,于海,吴君. 补肾益智方对SAMP8小鼠海马α-Syn和PSD-95表达的影响. 中国老年学杂志. 2024(02): 422-429 . 百度学术
    3. 张琳琳,王东平,向鑫,蒋晓杰,章洁. 基于“治未病”思想探讨中医药调控CREB蛋白防治阿尔茨海默病的作用机制研究进展. 内蒙古中医药. 2024(02): 148-152 . 百度学术
    4. 胡胜全,陈可冀,吴正治. 中西药杂合体多靶点抗阿尔茨海默病研究进展. 中国中西医结合杂志. 2024(03): 373-378 . 百度学术
    5. 周君,李明成,米彩云,王虎平. 中药调控阿尔茨海默病tau蛋白过度磷酸化的研究进展. 天然产物研究与开发. 2022(06): 1067-1075 . 百度学术
    6. 崔金帅,刘妍,王子颖,陈刚. 续断及其有效成分的抗痴呆作用及研究进展. 药学学报. 2022(10): 3057-3066 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  577
  • HTML全文浏览量:  17
  • PDF下载量:  647
  • 被引次数: 8
出版历程
  • 刊出日期:  2020-11-09

目录

    /

    返回文章
    返回