商品化糖苷酶转化糖苷类天然产物研究进展

刘玥, 胡立宏, 张毅楠

刘玥, 胡立宏, 张毅楠. 商品化糖苷酶转化糖苷类天然产物研究进展[J]. 南京中医药大学学报, 2020, 36(5): 721-726.
引用本文: 刘玥, 胡立宏, 张毅楠. 商品化糖苷酶转化糖苷类天然产物研究进展[J]. 南京中医药大学学报, 2020, 36(5): 721-726.
LIU Yue, HU Li-hong, ZHANG Yi-nan. Research Progresses on Converting Glycoside Natural Products by Commercial Glycosidases[J]. Journal of Nanjing University of traditional Chinese Medicine, 2020, 36(5): 721-726.
Citation: LIU Yue, HU Li-hong, ZHANG Yi-nan. Research Progresses on Converting Glycoside Natural Products by Commercial Glycosidases[J]. Journal of Nanjing University of traditional Chinese Medicine, 2020, 36(5): 721-726.

商品化糖苷酶转化糖苷类天然产物研究进展

Research Progresses on Converting Glycoside Natural Products by Commercial Glycosidases

  • 摘要: 糖苷类化合物广泛存在于药用植物中,具有多种潜在的生物活性。众多研究表明糖苷类化合物中糖单元对于活性具有至关重要的作用。相比于传统的化学方法,使用酶解法进行糖基转化,具有反应温和环保,特异性好等特点,可以实现糖基部分的选择性水解。但是不同实验室来源的糖基酶也具有基原复杂、比化学试剂质量稳定性差等劣势。因此,使用来源可控、性能相对稳定的商品化糖苷酶是开展糖苷类天然产物糖基选择性修饰的可行途径。以使用商品化酶水解中药天然产物的研究为契入点,对它们的特点和应用展开综述。
    Abstract: Glycoside compounds are widely present in medicinal plants and have a variety of potential biological activities. Numerous studies have shown that sugar units in glycoside compounds play an essential role in their biological activity. Compared with traditional chemical methods, enzymatic hydrolysis by glycosylases has characterized by mild condition, environmental-friendship, and high specificity and could be used for selective hydrolysis of sugar unit. However, glycosylases from different labs suffer from various origins, uncontrollable quality and stability issues in comparison with chemical reagents. Therefore, the use of commercially available glycosylases that originate from a stable source with quality control is a feasible way to carry out selective modification on the glycoside compounds. Toward to this end, this review summarized recent applications on converting glycosides in TCM natural products by commercially available glycosidases.
  • [1] WOLFENDER JL, LITAUDON M, TOUBOUL D, et al. Innovative omics-based approaches for prioritisation and targeted isolation of natural products-new strategies for drug discovery[J]. Nat Prod Rep, 2019, 36(6): 855-868.
    [2] KHAN H, SAEEDI M, NABAVI SM, et al. Glycosides from medicinal plants as potential anticancer agents: Emerging trends towards future drugs[J]. Curr Med Chem, 2019, 26(13): 2389-2406.
    [3] 杨云松, 高鹏, 代龙. 糖苷类化合物体外生物转化的研究进展[J]. 中国生化药物杂志, 2012, 32(6): 927-930.
    [4] SPANOGIANNOPOULOS P, BESS EN, CARMODY RN, et al. The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism[J]. Nat Rev Microbiol, 2016, 14(5): 273-287.
    [5] RYE CS, WITHERS SG. Glycosidase mechanisms[J]. Curr Opin Chem Biol, 2000, 4(5): 573-580.
    [6] PRASSAS I, DIAMANDIS EP. Novel therapeutic applications of cardiac glycosides[J]. Nat Rev Drug Discov, 2008, 7(11): 926-935.
    [7] ZHANG J, PONOMAREVA LV, NANDURKAR NS, et al. Influence of sugar amine regiochemistry on digitoxigenin neoglycoside anticancer activity[J]. ACS Med Chem Lett, 2015, 6(10): 1053-1058.
    [8] LAURSEN M, GREGERSEN JL, YATIME L, et al. Structures and characterization of digoxin-and bufalin-bound Na+, K+-ATPase compared with the ouabain-bound complex[J]. Proc Natl Acad Sci USA, 2015, 112(6): 1755-1760.
    [9] HUANG W, WEN C, ZHOU ZR, et al. An efficient one-pot enzymatic synthesis of cardiac glycosides with varied sugar chain lengths[J]. Adv Synth Catal, 2019, 361(13): 3114-3119.
    [10] 于荣敏. 天然药物活性成分的生物合成与生物转化[J]. 中草药, 2006, 37(9): 1281-1288.
    [11] 穆丽华, 刘屏, 张静. 皂苷体外生物转化水解反应的研究进展[J]. 天然产物研究与开发, 2016, 28(1): 156-163.
    [12] 范冬冬, 匡艳辉, 向世勰, 等. 绞股蓝化学成分及其药理活性研究进展[J]. 中国药学杂志, 2017, 52(5): 342-352.
    [13] 王宇. 生物转化法制备人参皂苷F1及Rh1的研究[D]. 大连: 大连工业大学, 2015.
    [14] MCDONALD AG, BOYCE S, TIPTON KF. ExplorEnz: the primary source of the IUBMB enzyme list[J]. Nucleic Acids Res, 2009, 37(S1): D593-D597.
    [15] LOMBARD V, GOLACONDA RAMULU H, DRULA E, et al. The carbohydrate-active enzymes database (CAZy) in 2013[J]. Nucleic Acids Res, 2014, 42: 490-495.
    [16] 黄红卫, 刘艳丽, 李春. 糖苷酶的研究及其改造策略[J]. 生物技术通报, 2010(5): 55-60.
    [17] 崔莹莹. 酶法分离和转化人参皂苷Rb2、Rb3和Rc的研究[D]. 长春: 东北师范大学, 2019.
    [18] SHIN KC, OH DK. Classification of glycosidases that hydrolyze the specific positions and types of sugar moieties in ginsenosides[J]. Crit Rev Biotechnol, 2016, 36(6): 1036-1049.
    [19] NOH KH, OH DK. Production of the rare ginsenosides compound K, compound Y, and compound Mc by a thermostable beta-glycosidase from Sulfolobus acidocaldarius<\i>[J]. Biol Pharm Bull, 2009, 32(11): 1830-1835.
    [20] TAWAB MA, BAHR U, KARAS M, et al. Degradation of ginsenosides in humans after oral administration[J]. Drug Metab Dispos, 2003, 31(8): 1065-1071.
    [21] HASEGAWA H. Proof of the mysterious efficacy of ginseng: Basic and clinical trials: Metabolic activation of ginsenoside: Deglycosylation by intestinal bacteria and esterification with fatty acid[J]. J Pharmacol Sci, 2004, 95(2): 153-157.
    [22] 刘文山,李振伟,傅荣昭. 糖苷酶在人参皂苷转化中的应用[J]. 生物技术通讯, 2019, 30(4): 579-588.
    [23] 姜彬慧, 韩颖, 赵余庆, 等. 酶转化三七叶总皂苷制备人参皂苷C-K的工艺优化[J]. 中草药, 2004, 35(9): 986-988.
    [24] 童庆宣, 陈良华, 明艳林, 等. 稀有人参皂苷IH901酶法转化与制备研究[J]. 天然产物研究与开发, 2009, 21(6): 1039-1044.
    [25] 张阳, 林毅. 酶法转化二醇型人参皂苷Rd及制备稀有人参皂苷C-K[J]. 华侨大学学报(自然科学版), 2011, 32(6): 668-671.
    [26] 于兆慧, 刘其媛, 崔莉, 等. 蜗牛酶转化人参皂苷Rb1制备人参稀有皂苷Compound K的研究[J]. 中华中医药杂志, 2015, 30(2): 412-416.
    [27] 羊学荣, 卢凤来, 王磊, 等. 酶水解百分之五十罗汉果皂苷Ⅴ方法学研究[J]. 广西植物, 2015, 35(6): 812-816, 898.
    [28] 卢文杰, 王雪芬, 陈家源, 等. 大叶紫金牛化学成分的研究[J]. 华西药学杂志, 1990, 5(3): 136-138.
    [29] ZHENG ZF, XU JF, FENG ZM, et al. Cytotoxic triterpenoid saponins from the roots of Ardisia crenata<\i>[J]. J Asian Nat Prod Res, 2008, 10(9/10): 833-839.
    [30] CHANG X, LI W, JIA Z, et al. Biologically active triterpenoid saponins from Ardisia japonica<\i>[J]. J Nat Prod, 2007, 70(2): 179-187.
    [31] 熊剑, 章翔, 程光, 等. Ardipusilloside Ⅰ诱导胶质母细胞瘤细胞凋亡实验研究[J]. 中华神经外科疾病研究杂志, 2010, 9(1): 10-14.
    [32] 张静. 走马胎中三萜皂苷Ag3的生物转化及其产物抗肿瘤活性研究[D]. 太原: 山西中医学院, 2016.
    [33] LIU W, HUANG W, SUN WL, et al. Production of diosgenin from yellow ginger (Dioscorea zingiberensis<\i> C. H. Wright) saponins by commercial cellulase[J]. World J Microbiol Biotechnol, 2010, 26(7): 1171-1180.
    [34] 夏广萍, 刘鹏, 赵娜夏, 等. β<\i>-葡萄糖苷酶水解黄芪甲苷的研究[J]. 中草药, 2012, 43(6): 1112-1114.
    [35] 王霄旸, 谢人明, 孙文基. 淫羊藿属药用植物黄酮类化合物的研究进展[J]. 中药药理与临床, 2010, 26(5): 171-175.
    [36] 于霄, 宋静, 熊志立, 等. 一测多评法测定淫羊藿中朝藿定A、朝藿定B、朝藿定C及淫羊藿苷的含量[J]. 中国中药杂志, 2010, 35(24): 3310-3313.
    [37] 贾东升, 贾晓斌, 赵江丽, 等. 纤维素酶转化淫羊藿苷制备宝藿苷Ⅰ的研究[J]. 中草药, 2010, 41(6): 888-892.
    [38] 张振海, 陈玲玲, 贾晓斌, 等. β<\i>-葡萄糖苷酶酶解淫羊藿苷制备宝藿苷Ⅰ的工艺研究[J]. 中国药房, 2011, 22(43): 4059-4061.
    [39] 贾东升, 贾晓斌, 薛璟, 等. 蜗牛酶转化淫羊藿苷制备淫羊藿苷元的研究[J]. 中国中药杂志, 2010, 35(7): 857-860.
    [40] 徐凤娟, 孙娥, 张振海, 等. 纤维素酶转化朝藿定B制备箭藿苷B的研究[J]. 中国中药杂志, 2014, 39(2): 235-239.
    [41] 高霞, 刘璇, 陈彦, 等. 淫羊藿总黄酮的生物转化过程分析[J]. 中国中药杂志, 2013, 38(23): 4079-4083.
    [42] 彭静, 马益华, 陈彦, 等. 固定化蜗牛酶同时生物转化淫羊藿中4种黄酮苷[J]. 中成药, 2016, 38(9): 1984-1990.
    [43] 卢艺. 基于酶水解制备淫羊藿次级黄酮苷的研究[D]. 镇江: 江苏大学, 2019.
    [44] BIAN X, WANG S, LIU J, et al. Hepatoprotective effect of chiisanoside against acetaminophen-induced acute liver injury in mice[J]. Nat Prod Res, 2019, 33(18): 2704-2707.
    [45] BIAN X, LIU X, LIU J, et al. Study on antidepressant activity of chiisanoside in mice[J]. Int Immunopharmacol, 2018, 57: 33-42.
    [46] BIAN XB, ZHAO Y, GUO X, et al. Chiisanoside, a triterpenoid saponin, exhibits anti-tumor activity by promoting apoptosis and inhibiting angiogenesis[J]. RSC Adv, 2017, 7(66): 41640-41650.
    [47] 陈晨. Chiisanoside次级苷的分离、制备及其抗心律失常活性研究[D]. 长春:吉林农业大学, 2020.
  • 期刊类型引用(1)

    1. 张娟,黄凤玉,王庆婷,杨颜溶,杨静,雷敬卫,谢彩侠. 盾叶薯蓣制备薯蓣皂苷元方法的研究进展. 中国实验方剂学杂志. 2023(20): 274-282 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  467
  • HTML全文浏览量:  25
  • PDF下载量:  301
  • 被引次数: 4
出版历程
  • 刊出日期:  2020-09-09

目录

    /

    返回文章
    返回