王昱, 郭盛, 刘海峰, 钱大玮, 王明耿, 郭兰萍, 段金廒. Box-Behnken响应面法优化复合益生菌发酵三七药渣工艺及体外抗氧化活性研究[J]. 南京中医药大学学报, 2024, 40(6): 555-568. DOI: 10.14148/j.issn.1672-0482.2024.0555
引用本文: 王昱, 郭盛, 刘海峰, 钱大玮, 王明耿, 郭兰萍, 段金廒. Box-Behnken响应面法优化复合益生菌发酵三七药渣工艺及体外抗氧化活性研究[J]. 南京中医药大学学报, 2024, 40(6): 555-568. DOI: 10.14148/j.issn.1672-0482.2024.0555
WANG Yu, GUO Sheng, LIU Haifeng, QIAN Dawei, WANG Minggeng, GUO Lanping, DUAN Jinao. Optimization of Composite Probiotics Fermentation Process for Notoginseng Radix et Rhizoma Residues by Box-Behnken Response Surface Method and Evaluation of Their in vitro Antioxidant Activities[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(6): 555-568. DOI: 10.14148/j.issn.1672-0482.2024.0555
Citation: WANG Yu, GUO Sheng, LIU Haifeng, QIAN Dawei, WANG Minggeng, GUO Lanping, DUAN Jinao. Optimization of Composite Probiotics Fermentation Process for Notoginseng Radix et Rhizoma Residues by Box-Behnken Response Surface Method and Evaluation of Their in vitro Antioxidant Activities[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(6): 555-568. DOI: 10.14148/j.issn.1672-0482.2024.0555

Box-Behnken响应面法优化复合益生菌发酵三七药渣工艺及体外抗氧化活性研究

Optimization of Composite Probiotics Fermentation Process for Notoginseng Radix et Rhizoma Residues by Box-Behnken Response Surface Method and Evaluation of Their in vitro Antioxidant Activities

  • 摘要:
      目的   以三七药渣为原料,通过益生菌发酵比较不同益生菌以及复合益生菌对各指标成分影响的差异,探究最佳发酵工艺。
      方法   采用单因素、Box-Behnken响应面法优化发酵工艺,并通过体外抗氧化实验评价发酵产物的抗氧化能力。
      结果   最佳发酵工艺为有氧发酵48 h、厌氧发酵36 h,嗜热链球菌、两歧双歧杆菌、嗜酸乳杆菌的比例为2 ∶ 3 ∶ 1,料液比0.14 g·mL-1,接菌量5%,温度33 ℃。在最佳发酵工艺条件下,三七药渣中性多糖、酸性多糖、总黄酮的含量分别提高了105.64%、96.98%、123.83%,相较于单菌发酵均显著升高。发酵产物清除DPPH、ABTS自由基的IC50值分别为1.774、3.065 mg·mL-1,还原Fe3+的能力为0.138 mmol FeSO4·g-1,较未发酵药渣显著增强。
      结论   最佳发酵工艺能显著提高三七药渣中各指标成分含量,显著增强其抗氧化能力,相较单菌发酵各指标成分含量均显著提高,提示上述益生菌之间没有明显的拮抗作用。研究结果为三七药渣的资源化利用提供了科学依据和数据支撑。

     

    Abstract:
      OBJECTIVE   Notoginseng Radix et Rhizoma residues were used as raw material to compare the difference in the impact of different probiotics and composite probiotic on various indicator components through probiotic fermentation, aiming to explore the optimal fermentation process.
      METHODS   The fermentation process was optimized using single factor and Box-Behnken response surface methodology, and the antioxidant capacity of the fermentation product was assessed through in vitro antioxidant experiments.
      RESULTS   The results showed the optimum fermentation processes were 48 h of aerobic fermentation, 36 h of anaerobic fermentation, ratio of 2 ∶ 3 ∶ 1 for Streptococcus thermophilus, Bifidobacterium bifidum and Lactobacillus acidophilus, solid-liquid ratio of 0.14 g·mL-1, inoculation quantity 5%, fermentation temperature 33 ℃. Under the optimal fermentation conditions, the content of neutral polysaccharide, acidic polysaccharide, and total flavonoid in Notoginseng Radix et Rhizoma residue increased by 105.64%, 96.98% and 123.83%, respectively, which were high than those single-strain fermentation. The IC50 values of scavenging DPPH and ABTS free radicals in the fermentation products were 1.774 mg·mL-1 and 3.065 mg·mL-1, respectively, and the power of reducing Fe3+ was 0.138 mmol FeSO4 g-1. The antioxidant capacity was significantly enhanced compared to the unfermented residues.
      CONCLUSION   The optimum fermentation process can significantly elevate the content of indicator components in Notoginseng Radix et Rhizoma residues and enhance its antioxidant capacity. Compared to single-strain fermentation, the content of various indicator components is significantly increased, showing no apparent antagonistic effect among the probiotics mentioned above. The study provides scientific evidence and data support for the resource utilization of Notoginseng Radix et Rhizoma residues.

     

/

返回文章
返回