留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于网络药理学和分子对接探讨六神胶囊治疗COVID-19的物质基础及作用机制

马钦海 陈瑞晗 杨子峰

马钦海, 陈瑞晗, 杨子峰. 基于网络药理学和分子对接探讨六神胶囊治疗COVID-19的物质基础及作用机制[J]. 南京中医药大学学报, 2020, 36(6): 907-914.
引用本文: 马钦海, 陈瑞晗, 杨子峰. 基于网络药理学和分子对接探讨六神胶囊治疗COVID-19的物质基础及作用机制[J]. 南京中医药大学学报, 2020, 36(6): 907-914.
MAQin-hai, CHENRui-han, YANGZi-feng. Study on the Potential Material Basis and Molecular Mechanism of Liushen Capsule on the Treatment of COVID-19 Through the Network Pharmacology and Molecular Docking[J]. Journal of Nanjing University of traditional Chinese Medicine, 2020, 36(6): 907-914.
Citation: MAQin-hai, CHENRui-han, YANGZi-feng. Study on the Potential Material Basis and Molecular Mechanism of Liushen Capsule on the Treatment of COVID-19 Through the Network Pharmacology and Molecular Docking[J]. Journal of Nanjing University of traditional Chinese Medicine, 2020, 36(6): 907-914.

基于网络药理学和分子对接探讨六神胶囊治疗COVID-19的物质基础及作用机制

Study on the Potential Material Basis and Molecular Mechanism of Liushen Capsule on the Treatment of COVID-19 Through the Network Pharmacology and Molecular Docking

  • 摘要: 目的 通过网络药理学及分子对接技术探寻六神胶囊治疗新型冠状病毒肺炎(COVID-19)的潜在物质基础和分子机制。方法 借助常用的网络药理学数据库检索六神胶囊中雄黄、人工牛黄、冰片、蟾酥和麝香等的有效活性成分和作用靶点。通过UniProt数据库查询靶点对应的基因,Cytoscape 3.6.1软件构建中药-有效活性成分-有效靶点网络,通过Metascape平台进行GO富集分析、KEGG和Reactome信号通路分析,将中药有效活性成分-有效靶点网络中排名前20的单体与新型冠状病毒(SARS-CoV-2)3CL水解酶、血管紧张素转化酶Ⅱ(ACE2)以及SARS-CoV-2 RNA依赖性RNA聚合酶(RNA dependent RNA polymerase, RdRp)进行分子对接。结果 中药-有效活性成分-有效靶点网络包含药材5个、化合物132个、靶点2 082个,关键靶点涉及PTGS2、ESR1、PLA2G1B、PTGS1等。GO功能富集分析得到GO条目495个(P<0.05),其中生物过程(BP)条目287个,细胞组成(CC)条目96个,分子功能(MF)条目112个。KEGG通路富集筛选得到107条信号通路(P<0.05),主要涉及免疫和炎症通路,细胞生长、代谢、凋亡相关通路,癌症通路,神经活性配体-受体相互作用等。Reactome通路富集筛选得到85条信号通路(P<0.05),主要涉及G蛋白偶联、白细胞介素信号、受体酪氨酸激酶信号、神经系统、基因转录等通路。分子对接结果显示六神胶囊中麦角胺、熊果酸、鹅去氧胆酸等核心活性化合物与SARS-CoV-2 3CL水解酶、ACE2以及SARS-CoV-2 RdRp的亲和力与临床推荐化学药相似。结论 六神胶囊中的活性成分麦角胺、熊果酸、鹅去氧胆酸等可能通过与ACE2结合并作用于PTGS2、ESR1、PLA2G1B和PTGS1等靶点调节多条信号通路,从而起到抑制SARS-CoV-2的作用。

     

  • [1] ZHU N, ZHANG DY, WANG WL, et al. A novel coronavirus from patients with pneumonia in China, 2019[J]. N Engl J Med, 2020, 382(8): 727-733.
    [2] MAHASE E. China coronavirus: WHO declares international emergency as death toll exceeds 200[J]. BMJ, 2020, 368: 408.
    [3] WANG WE, TANG JM, WEI FQ. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China[J]. J Med Virol, 2020, 92(4): 441-447.
    [4] 国家卫生健康委员会国家中医药管理局. 新型冠状病毒肺炎诊疗方案(试行第七版)[J]. 江苏中医药, 2020,52(4):1-6.
    [5] 李丽,杨华升,勾春燕,等. 46例新型冠状病毒肺炎中医临床特征分析[J]. 首都医科大学学报, 2020,41(2):155-160.
    [6] 陈瑞,罗亚萍,徐勋华,等. 基于武汉地区52例新型冠状病毒肺炎的中医证治初探及典型病案分析[J]. 中医杂志,2020,62(9):741-744.
    [7] 郑国华,王桂红. 六神丸的临床应用和药理研究进展[J]. 湖北中医杂志, 1996,18(4):56.
    [8] 韩树景, 裴改社. 六神丸的临床运用[J]. 中国民族民间医药杂志, 2000, 9(1): 57-58.
    [9] 孙兆泉, 剪林宏, 肖梅英, 等. 六神含片抗流感病毒及细菌感染作用的实验研究[J]. 湖南中医药导报, 1997, 3(5): 23-24.
    [10] LI XJ, JIA MM, LI YS, et al. Involvement of substance p/neurokinin-1 receptor in the analgesic and anticancer activities of minimally toxic fraction from the traditional Chinese medicine Liu-Shen-Wan in vitro[J]. Biol Pharm Bull, 2014, 37(3): 431-438.
    [11] MA HY, KOU JP, ZHU DN, et al. Liu-Shen-Wan, a traditional Chinese medicine, improves survival in Sepsis induced by cecal ligation and puncture via reducing TNF-α levels, MDA content and enhancing macrophage phagocytosis[J]. Int Immunopharmacol, 2006, 6(8): 1355-1362.
    [12] MA HY, KOU JP, WANG JR, et al. Evaluation of the anti-inflammatory and analgesic activities of Liu-Shen-Wan and its individual fractions[J]. J Ethnopharmacol, 2007, 112(1): 108-114.
    [13] MA QH, HUANG WB, ZHAO J, et al. Liu Shen Wan inhibits influenza a virus and excessive virus-induced inflammatory response via suppression of TLR4/NF-κB signaling pathway in vitro and in vivo[J]. J Ethnopharmacol, 2020, 252: 112584.
    [14] 上海市卫生健康委员会.上海市新型冠状病毒肺炎中医诊疗方案(试行第二版)[EB/OL].(2020-02-24)[2020-08-15]http://wsjkw.sh.gov.cn/zyygz2/20200224/a1f1aab9745e4490867cb 4aaf40eaad0.html.
    [15] XU QH, BAUER R, HENDRY BM, et al. The quest formodernisation of traditional Chinese medicine[J]. BMC Complement Altern Med, 2013, 13: 132.
    [16] HOPKINS AL. Network pharmacology[J]. Nat Biotechnol,2007,25(10): 1110-1111.
    [17] 赵丽琴, 肖军海, 李松. 分子对接在基于结构药物设计中的应用[J]. 生物物理学报, 2002, 18(3): 263-270.
    [18] 许海玉, 刘振明, 付岩, 等. 中药整合药理学计算平台的开发与应用[J]. 中国中药杂志, 2017, 42(18): 3633-3638.
    [19] XU M, SHI J, MIN Z, et al. A network pharmacology approach to uncover the molecular mechanisms of herbal formula Kang-bai-Ling for treatment of vitiligo[J]. Evid Based Complement Alternat Med, 2019, 2019: 3053458.
    [20] 黄漠然, 赵文靖, 李晋生, 等. 牛黄及其代用品化学成分、分析方法和药理作用研究进展[J]. 药物分析杂志, 2018, 38(7): 1116-1123.
    [21] 闫焕,赵文静,常惟智.牛黄的药理作用及临床应用研究进展[J]. 中医药信息, 2013, 30(2): 114-116.
    [22] 陈瀛澜,郝艳艳,郭夫江,等.蟾酥化学成分及药理活性研究进展[J]. 中草药, 2017, 48(12): 2579-2588.
    [23] 罗世兰,廖利,邹琼芳,等.冰片的研究进展[J].中国民族民间医药,2018,27(5): 73-76.
    [24] 陈艳红, 冯玉林. 冰片的研究进展[J]. 中国社区医师(医学专业), 2013, 15(6): 10-11.
    [25] 蒋且英, 罗云, 谭婷, 等. 气质联用和化学计量学比较不同品种和产地麝香挥发性成分组成[J]. 中国实验方剂学杂志, 2018, 24(3): 49-55.
    [26] 杨弘, 吴树华, 俞磊明. GC-MS联用对麝香中多组分定性分析的研究[J]. 中成药, 2013, 35(9): 1966-1968.
    [27] 徐森楠, 庄莉, 翟园园, 等. 基于网络药理学研究二至丸防治骨质疏松症的物质基础与作用机制[J]. 中国药学杂志, 2018, 53(22): 1913-1920.
    [28] 李建生, 李素云, 谢洋. 河南省新型冠状病毒肺炎中医辨证治疗思路与方法[J]. 中医学报, 2020, 35(3): 453-457.
    [29] 郑文科, 张俊华, 杨丰文, 等. 中医药防治新型冠状病毒肺炎各地诊疗方案综合分析[J]. 中医杂志, 2020, 61(4): 277-280.
    [30] 苗万, 刘亚平. 六神丸的药理研究[J]. 中国药物与临床, 2011, 11(8): 935-936.
    [31] MA QH, PAN WQ, LI RF, et al. Liu Shen capsule shows antiviral and anti-inflammatory abilities against novel coronavirus SARS-CoV-2 via suppression of NF-κB signaling pathway[J]. Pharmacol Res, 2020, 158: 104850.
    [32] WALLS AC, PARK YJ, TORTORICI MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein[J]. Cell, 2020, 181(2): 281-292.
    [33] ZIEBUHR J. The coronavirus replicase[J].Curr Top Microbiol Immunol, 2005,287:57-94.
    [34] AHMAD J, IKRAM S, AHMAD F, et al. SARS-CoV-2 RNA Dependent RNA polymerase (RdRp): A drug repurposing study[J]. Heliyon,2020, 6(7): e04502.
    [35] CHENG LT, YEH MM, LU CC. Phenobarbital-induced liver injury with nodal angiomatosis[J]. Hepatology, 2019, 70(1): 437-439.
    [36] LI H, CHEN LZ, LI SM, et al. Incorporation of privileged structures into 3-O-β-chacotriosyl ursolic acid can enhance inhibiting the entry of the H5N1 virus[J]. Bioorg Med Chem Lett, 2019, 29(18): 2675-2680.
    [37] LUO L, HAN WL, DU JY, et al. Chenodeoxycholic acid from bile inhibits influenza A virus replication via blocking nuclear export of viral ribonucleoprotein complexes[J]. Molecules, 2018, 23(12): E3315.
  • 加载中
计量
  • 文章访问数:  441
  • HTML全文浏览量:  19
  • PDF下载量:  309
  • 被引次数: 0
出版历程
  • 刊出日期:  2020-11-10

目录

    /

    返回文章
    返回