Citation: | LI Yi, LIU Xia-jin, SU Shu-lan, YU Li, ZHU Yue, QIAN Da-wei, ZHAO Ming, DUAN Jin-ao. Application Progress and Prospect of Model Organism Zebrafish in Activity Screening and Toxicity Evaluation of Traditional Chinese Medicine[J]. Journal of Nanjing University of traditional Chinese Medicine, 2020, 36(5): 715-720. |
[1] |
孙智慧, 贾顺姬, 孟安明. 斑马鱼: 在生命科学中畅游[J]. 生命科学, 2006, 18(5): 431-436.
|
[2] |
STREISINGER G, WALKER C, DOWER N, et al. Production of clones of homozygous diploid zebra fish (Brachydanio rerio)[J]. Nature, 1981, 291(5813): 293-296.
|
[3] |
全珊珊,吴新荣. 斑马鱼, 人类疾病研究的理想模式动物[J]. 生命的化学, 2008, 28(3): 260-263.
|
[4] |
杨丽玲, 余林中. 斑马鱼: 一种可用于中药抗炎免疫药理研究的模式生物[J]. 中药药理与临床, 2012, 28(2): 175-178.
|
[5] |
GE H, TANG H, LIANG Y, et al. Rhein attenuates inflammation through inhibition of NF-κB and NALP3 inflammasome in vivo<\i> and in vitro<\i>[J]. Drug Des Devel Ther, 2017, 11: 1663-1671.
|
[6] |
GUO DL, CHEN JF, TAN L, et al. Terpene glycosides from Sanguisorba officinalis<\i> and their anti-inflammatory effects[J]. Molecules, 2019, 24(16): 2906.
|
[7] |
ZHOU H, CAO H, ZHENG Y, et al. Liang-Ge-San, a classic traditional Chinese medicine formula, attenuates acute inflammation in zebrafish and RAW 264.7 cells[J]. J Ethnopharmacol, 2020, 249: 112427.
|
[8] |
ZHANG Y, TAKAGI N, YUAN B, et al. The protection of indolealkylamines from LPS-induced inflammation in zebrafish[J]. J Ethnopharmacol, 2019, 243: 112122.
|
[9] |
GE H, TANG H, LIANG Y, et al. Rhein attenuates inflammation through inhibition of NF-κB and NALP3 inflammasome in vivo<\i> and in vitro<\i>[J]. Drug Des Devel Ther, 2017, 11: 1663-1671.
|
[10] |
ISOGAI S, HORIGUCHI M, WEINSTEIN BM. The vascular anatomy of the developing zebrafish: An atlas of embryonic and early larval development[J]. Dev Biol, 2001, 230(2): 278-301.
|
[11] |
NY A, AUTIERO M, CARMELIET P. Zebrafish and Xenopus<\i> tadpoles: Small animal models to study angiogenesis and lymphangiogenesis[J]. Exp Cell Res, 2006, 312(5): 684-693.
|
[12] |
HU WH, CHAN GKL, LOU JS, et al. The extract of Polygoni Cuspidati Rhizoma et Radix<\i> suppresses the vascular endothelial growth factor-induced angiogenesis[J]. Phytomedicine, 2018, 42: 135-143.
|
[13] |
何育霖, 杨雨婷, 何贝轩, 等. 紫草素对斑马鱼胚胎毒性和血管抑制作用[J]. 中成药, 2016, 38(2): 241-245.
|
[14] |
ALEX D, LAM IK, LIN Z, et al. Indirubin shows anti-angiogenic activity in an in vivo<\i> zebrafish model and an in vitro<\i> HUVEC model[J]. J Ethnopharmacol, 2010, 131(2): 242-247.
|
[15] |
CHEN Y, CHEN PD, BAO BH, et al. Anti-thrombotic and pro-angiogenic effects of Rubia cordifolia<\i> extract in zebrafish[J]. J Ethnopharmacol, 2018, 219: 152-160.
|
[16] |
LI J, ZHANG J, ZOU L, et al. Pro-angiogenic effects of Ilexsaponin A1 on human umbilical vein endothelial cells in vitro<\i> and zebrafish in vivo<\i>[J]. Phytomedicine, 2017, 36: 229-237.
|
[17] |
ZHOU ZY, XIAO Y, ZHAO WR, et al. Pro-angiogenesis effect and transcriptome profile of Shuxinyin formula in zebrafish[J]. Phytomedicine, 2019, 65: 153083.
|
[18] |
ZHANG JY, LIU MQ, HUANG MH, et al. Ginsenoside F1 promotes angiogenesis by activating the IGF-1/IGF1R pathway[J]. Pharmacol Res, 2019, 144: 292-305.
|
[19] |
詹扬, 韦英杰, 孙娥, 等. 基于斑马鱼模型的朝鲜淫羊藿抗骨质疏松活性部位筛选[J]. 中草药, 2014, 45(14): 2036-2041.
|
[20] |
ZHANG S, ZHANG Q, ZHANG D, et al. Anti-osteoporosis activity of a novel Achyranthes bidentata<\i> polysaccharide via stimulating bone formation[J]. Carbohydr Polym, 2018, 184: 288-298.
|
[21] |
LUO S, YANG Y, CHEN J, et al. Tanshinol stimulates bone formation and attenuates dexamethasone-induced inhibition of osteogenesis in larval zebrafish[J]. J Orthop Translat, 2016, 4: 35-45.
|
[22] |
MILLER AM, HORIGUCHI N, JEONG WI, et al. Molecular mechanisms of alcoholic liver disease: Innate immunity and cytokines[J]. Alcohol Clin Exp Res, 2011, 35(5): 787-793.
|
[23] |
GUO F, ZHENG K, BENED-UBIETO R, et al. The lieber-DeCarli diet-A flagship model for experimental alcoholic liver disease[J]. Alcohol Clin Exp Res, 2018, 42(10): 1828-1840.
|
[24] |
HOWARTH DL, PASSERI M, SADLER KC. Drinks like a fish: Using zebrafish to understand alcoholic liver disease[J]. Alcohol Clin Exp Res, 2011, 35(5): 826-829.
|
[25] |
LIN JN, CHANG LL, LAI CH, et al. Development of an animal model for alcoholic liver disease in zebrafish[J]. Zebrafish, 2015, 12(4): 271-280.
|
[26] |
周振婷. 橙皮苷对斑马鱼酒精性脂肪肝的治疗作用及其机制研究[D]. 广州: 南方医科大学, 2017.
|
[27] |
夏青, 韩利文, 张云, 等. 基于斑马鱼模型的柴胡皂苷a保肝作用与肝毒性研究[J]. 中国中药杂志, 2019, 44(13): 2662-2666.
|
[28] |
KALUEFF AV, GEBHARDT M, STEWART AM, et al. Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond[J]. Zebrafish, 2013, 10(1): 70-86.
|
[29] |
BUENAFE OE, ORELLANA-PAUCAR A, MAES J, et al. Tanshinone ⅡA exhibits anticonvulsant activity in zebrafish and mouse seizure models[J]. ACS Chem Neurosci, 2013, 4(11): 1479-1487.
|
[30] |
ZHANG S, LIU X, SUN M, et al. Reversal of reserpine-induced depression and cognitive disorder in zebrafish by sertraline and Traditional Chinese Medicine (TCM)[J]. Behav Brain Funct, 2018, 14(1): 13.
|
[31] |
夏婧, 游秋云, 黄攀攀, 等. 中药酸枣仁对斑马鱼睡眠剥夺模型的行为学及神经递质受体的影响[J]. 时珍国医国药, 2019, 30(9): 2061-2064.
|
[32] |
ZHAO C, JIA Z, LI E, et al. Hepatotoxicity evaluation of Euphorbia kansui<\i> on zebrafish larvae in vivo<\i>[J]. Phytomedicine, 2019, 62: 152959.
|
[33] |
ZHAO C, WANG M, JIA Z, et al. Similar hepatotoxicity response induced by Rhizoma Paridis in zebrafish larvae, cell and rat[J]. J Ethnopharmacol, 2020, 250: 112440.
|
[34] |
全云云, 周忆梦, 刘美辰, 等. 斑马鱼模型筛选何首乌肝毒性的物质基础[J]. 中国实验方剂学杂志, 2019, 25(6): 52-57.
|
[35] |
姚芳, 张楷承, 曹雨诞, 等. 京大戟醋制前后对斑马鱼胚胎肝、胃肠毒性的影响[J]. 中国中药杂志, 2019, 44(6): 1179-1185.
|
[36] |
段亚辉, 张云, 王雪, 等. 基于模式生物斑马鱼的款冬叶肝肾毒性比较研究[J]. 中草药, 2019, 50(3): 669-674.
|
[37] |
付晓春, 沈小莉, 俞航萍, 等. 雷公藤多苷促进斑马鱼肝细胞凋亡的实验研究[J]. 中国医院药学杂志, 2019, 39(10): 1032-1038.
|
[38] |
SUN W, YAN B, WANG R, et al. In vivo<\i> acute toxicity of detoxified Fuzi (lateral root of Aconitum carmichaeli<\i>) after a traditional detoxification process[J]. Excli J, 2018, 17: 889-899.
|
[39] |
WANG T, WANG CX, WU Q, et al. Evaluation of tanshinone ⅡA developmental toxicity in zebrafish embryos[J]. Molecules, 2017, 22(4): 660.
|
[40] |
LI J, ZHANG Y, LIU K, et al. Xiaoaiping induces developmental toxicity in zebrafish embryos through activation of ER stress, apoptosis and the wnt pathway[J]. Front Pharmacol, 2018, 9: 1250.
|