LI Xin-ru, SHENG Xian-jie, YANG Yan, AN Zhen-tao, KANG An, LI Hui, GE Fei. Effects of Four Commonly Used Chinese Medicines with Clearing Heat and Drying Dampness on Intestinal Flora Mediated Bile Acids and Short Chain Fatty Acids Metabolism[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(5): 442-451. DOI: 10.14148/j.issn.1672-0482.2023.0442
Citation: LI Xin-ru, SHENG Xian-jie, YANG Yan, AN Zhen-tao, KANG An, LI Hui, GE Fei. Effects of Four Commonly Used Chinese Medicines with Clearing Heat and Drying Dampness on Intestinal Flora Mediated Bile Acids and Short Chain Fatty Acids Metabolism[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(5): 442-451. DOI: 10.14148/j.issn.1672-0482.2023.0442

Effects of Four Commonly Used Chinese Medicines with Clearing Heat and Drying Dampness on Intestinal Flora Mediated Bile Acids and Short Chain Fatty Acids Metabolism

More Information
  • Received Date: January 05, 2023
  • Available Online: May 18, 2023
  •   OBJECTIVE  To explore the effects of four kinds of heat-clearing and dampness-drying herbs on intestinal flora, bile acids and short chain fatty acids (SCFAs) in normal mice at long-term clinical equivalent doses.
      METHODS  Thirty Balb/c male mice were randomly divided into control group, Sophora flavescens Ait. (KS) group, Phellodendron chinense Schneid. (HB) group, Coptis chinensis Franch. (HL) group and Scutellaria baicalensis Georgi (HQ) group, with 6 mice in each group. Except for the control group, KS group, HB group, HL group and HQ group were orally administrated at a dosage of 2.34 g·kg-1, 3.12 g·kg-1, 1.3 g·kg-1 and 2.6 g·kg-1, respectively, for two weeks. The contents of short chain fatty acids and bile acids in feces were detected by liquid chromatography tandem mass spectrometry, and the structural changes of microflora in intestinal contents were detected by 16S rRNA high-throughput gene sequencing technology.
      RESULTS  There was no significant effect of heat-clearing and dampness-drying Chinese medicine on the contents of six short-chain fatty acids in the feces of normal mice. Among the 23 common bile acids, when compared with the control group, the numbers of the significantly changed bile acids in HQ group, KS group, HL group and HB group were 4, 3, 2 and 1, respectively. From the perspective of changes in the abundance of intestinal flora, compared with the control group, except for the KS group, Firmicutes in the HL group, HQ group and HB group all showed a downward trend, and the Bacteroides showed an upward trend, among which the changes in the HL group were the most significant.
      CONCLUSION  Sophora flavescens Ait., Phellodendron chinense Schneid., Coptis chinensis Franch. and Scutellaria baicalensis Georgi have little effect on SCFAs in normal mice, but can affect bile acid content by changing the structure of intestinal flora.
  • [1]
    ADAK A, KHAN MR. An insight into gut microbiota and its functionalities[J]. Cell Mol Life Sci, 2019, 76(3): 473-493. DOI: 10.1007/s00018-018-2943-4
    [2]
    SINGH RK, CHANG HW, YAN D, et al. Influence of diet on the gut microbiome and implications for human health[J]. J Transl Med, 2017, 15(1): 73. DOI: 10.1186/s12967-017-1175-y
    [3]
    SCHOELER M, CAESAR R. Dietary lipids, gut microbiota and lipid metabolism[J]. Rev Endocr Metab Disord, 2019, 20(4): 461-472. DOI: 10.1007/s11154-019-09512-0
    [4]
    牛璐, 王跃飞, 赵鑫, 等. 中药调控肠道菌群代谢产物的研究进展[J]. 天津中医药, 2021, 38(2): 254-260. https://www.cnki.com.cn/Article/CJFDTOTAL-TJZY202102029.htm

    NIU L, WANG YF, ZHAO X, et al. Research progress on the regulation of gut microbial metabolites by traditional Chinese medicine[J]. J Tianjin Univ Tradit Chin Med, 2021, 38(2): 254-260. https://www.cnki.com.cn/Article/CJFDTOTAL-TJZY202102029.htm
    [5]
    RATAJCZAK W, RYŁ A, MIZERSKI A, et al. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs)[J]. Acta Biochim Pol, 2019, 66(1): 1-12.
    [6]
    YANG WJ, YU TM, HUANG XS, et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity[J]. Nat Commun, 2020, 11(1): 4457. DOI: 10.1038/s41467-020-18262-6
    [7]
    WANG G, YU Y, WANG YZ, et al. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy[J]. J Cell Physiol, 2019, 234(10): 17023-17049. DOI: 10.1002/jcp.28436
    [8]
    PORTINCASA P, BONFRATE L, VACCA M, et al. Gut microbiota and short chain fatty acids: Implications in glucose homeostasis[J]. Int J Mol Sci, 2022, 23(3): 1105. DOI: 10.3390/ijms23031105
    [9]
    HUANG W, MAN Y, GAO CL, et al. Short-chain fatty acids ameliorate diabetic nephropathy via GPR43-mediated inhibition of oxidative stress and NF-κB signaling[J]. Oxid Med Cell Longev, 2020, 2020: 4074832.
    [10]
    COLOSIMO S, TOMLINSON JW. Bile acids as drivers and biomarkers of hepatocellular carcinoma[J]. World J Hepatol, 2022, 14(9): 1730-1738. DOI: 10.4254/wjh.v14.i9.1730
    [11]
    LI JN, DAWSON PA. Animal models to study bile acid metabolism[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(5): 895-911. DOI: 10.1016/j.bbadis.2018.05.011
    [12]
    WINSTON JA, THERIOT CM. Diversification of host bile acids by members of the gut microbiota[J]. Gut Microbes, 2020, 11(2): 158-171. DOI: 10.1080/19490976.2019.1674124
    [13]
    MCKENZIE C, TAN J, MACIA L, et al. The nutrition-gut microbiome-physiology axis and allergic diseases[J]. Immunol Rev, 2017, 278(1): 277-295. DOI: 10.1111/imr.12556
    [14]
    FIORUCCI S, CARINO A, BALDONI M, et al. Bile acid signaling in inflammatory bowel diseases[J]. Dig Dis Sci, 2021, 66(3): 674-693. DOI: 10.1007/s10620-020-06715-3
    [15]
    DELEU S, MACHIELS K, RAES J, et al. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD?[J]. EBioMedicine, 2021, 66: 103293. DOI: 10.1016/j.ebiom.2021.103293
    [16]
    WANG J, WANG L, LOU GH, et al. Coptidis Rhizoma: A comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology[J]. Pharm Biol, 2019, 57(1): 193-225. DOI: 10.1080/13880209.2019.1577466
    [17]
    SUN Y, LENON GB, YANG AWH. Phellodendri cortex: A phytochemical, pharmacological, and pharmacokinetic review[J]. Evid Based Complement Alternat Med, 2019, 2019: 7621929.
    [18]
    WANG ZL, WANG S, KUANG Y, et al. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis[J]. Pharm Biol, 2018, 56(1): 465-484. DOI: 10.1080/13880209.2018.1492620
    [19]
    LI X, TANG ZW, WEN L, et al. Matrine: A review of its pharmacology, pharmacokinetics, toxicity, clinical application and preparation researches[J]. J Ethnopharmacol, 2021, 269: 113682. DOI: 10.1016/j.jep.2020.113682
    [20]
    PAN LL, LI ZZ, WANG YF, et al. Network pharmacology and metabolomics study on the intervention of traditional Chinese medicine Huanglian Decoction in rats with type 2 diabetes mellitus[J]. J Ethnopharmacol, 2020, 258: 112842. DOI: 10.1016/j.jep.2020.112842
    [21]
    章常华, 魏悦, 施旻, 等. 知母黄柏药对对肥胖症大鼠模型降脂作用的实验研究[J]. 时珍国医国药, 2021, 32(4): 773-776.

    ZHANG CH, WEI Y, SHI M, et al. Experimental study on the lipid-lowering effect of Anemarrhenae Rhizoma-Phelloden-dri Chinensis Cortex herb pair on obesity rat model[J]. Lishizhen Med Mater Med Res, 2021, 32(4): 773-776.
    [22]
    XIAO SW, LIU C, CHEN MJ, et al. Scutellariae radix and coptidis rhizoma ameliorate glycolipid metabolism of type 2 diabetic rats by modulating gut microbiota and its metabolites[J]. Appl Microbiol Biotechnol, 2020, 104(1): 303-317. DOI: 10.1007/s00253-019-10174-w
    [23]
    SHAO J, LIU Y, WANG H, et al. An integrated fecal microbiome and metabolomics in T2DM rats reveal antidiabetes effects from host-microbial metabolic axis of EtOAc extract from Sophora flavescens[J]. Oxid Med Cell Longev, 2020, 2020: 1805418.
    [24]
    WANG BT, KONG QM, LI X, et al. A high-fat diet increases gut microbiota biodiversity and energy expenditure due to nutrient difference[J]. Nutrients, 2020, 12(10): 3197. DOI: 10.3390/nu12103197
    [25]
    YUAN XY, XUE J, TAN YX, et al. Albuca bracteate polysaccharides synergistically enhance the anti-tumor efficacy of 5-fluorouracil against colorectal cancer by modulating β-catenin signaling and intestinal flora[J]. Front Pharmacol, 2021, 12: 736627. DOI: 10.3389/fphar.2021.736627
    [26]
    KIM KH, PARK D, JIA BL, et al. Identification and characterization of major bile acid 7α-dehydroxylating bacteria in the human gut[J]. mSystems, 2022, 7(4): e0045522. DOI: 10.1128/msystems.00455-22
    [27]
    ZHAO H, GAO X, LIU ZZ, et al. Sodium alginate prevents non-alcoholic fatty liver disease by modulating the gut-liver axis in high-fat diet-fed rats[J]. Nutrients, 2022, 14(22): 4846. DOI: 10.3390/nu14224846
    [28]
    黄玉普, 吴大章, 王森. 黄芩的药理作用及其药对研究进展[J]. 中国药业, 2022, 31(15): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGZ202215030.htm

    HUANG YP, WU DZ, WANG S. Research progress on pharmacological action of scutellariae Radix and its drug pair[J]. China Pharm, 2022, 31(15): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGZ202215030.htm
    [29]
    彭程程, 姚亮亮, 曾国威, 等. 葛根芩连汤干预胰岛素抵抗大鼠的粪便代谢组及相关菌群研究[J]. 中药新药与临床药理, 2021, 32(12): 1737-1744.

    PENG CC, YAO LL, ZENG GW, et al. Study on fecal metabolic mechanism and related flora of Gegen Qinlian Decoction in rats with insulin resistance[J]. Tradit Chin Drug Res Clin Pharmacol, 2021, 32(12): 1737-1744.
    [30]
    ZHAO LJ, MA P, PENG Y, et al. Amelioration of hyperglycaemia and hyperlipidaemia by adjusting the interplay between gut microbiota and bile acid metabolism: Radix Scutellariae as a case[J]. Phytomedicine, 2021, 83: 153477. DOI: 10.1016/j.phymed.2021.153477
    [31]
    FANG YK, YAN C, ZHAO Q, et al. The roles of microbial products in the development of colorectal cancer: A review[J]. Bioengineered, 2021, 12(1): 720-735. DOI: 10.1080/21655979.2021.1889109
    [32]
    GOOSSENS JF, BAILLY C. Ursodeoxycholic acid and cancer: From chemoprevention to chemotherapy[J]. Pharmacol Ther, 2019, 203: 107396.
  • Related Articles

    [1]XING Wenwen, LI Ang, ZHANG Ning, LIU Qi, WANG Mengjing. Effect of Acupuncture on Learning and Memory Ability and Intestinal Flora of SAMP8 Mice[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(11): 1200-1210. DOI: 10.14148/j.issn.1672-0482.2024.1200
    [2]LUO Xin, CHENG Peng, LU Yin, WEI Zhonghong. Syringic Acid Improves Cholestatic Liver Disease by Regulating Bile Acid Metabolism and Intestinal Barrier[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(4): 350-358. DOI: 10.14148/j.issn.1672-0482.2024.0350
    [3]ZHANG Shu-rui, FENG Han, DING Xue, ZHU Rui-gong, ZHANG Qi-chun, LI Yu, MENG Qing-hai, BIAN Hui-min. Liuwei Dihuang Formula Ameliorates Aberrant Cholesterol Metabolism in Postmenopausal APOE-/- Mice by Regulating Intestinal Microbiota and Bile Acid Metabolism[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(8): 728-737. DOI: 10.14148/j.issn.1672-0482.2023.0728
    [4]HU Jing-yi, ZHU Lei, LIAN Zi-yu, CHENG Cheng, FENG Wan, SHEN Hong. Baitouweng Decoction Alleviates DSSInduced Colitis via Rebalancing Gut Microbiota and Regulating Short Chain Fatty Acids[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(6): 817-822. DOI: 10.14148/j.issn.1672-0482.2021.0817
    [5]JIANG Xing-zhuo, PENG Yong-jun, XU Shu-ying, LI Wen-qian, WU Xu. Research Progress of Intestinal Flora in Acupuncture Treatment of Allergic Rhinitis from the Perspective of the Lung and Large Intestine Being Interior-Exteriorly Related[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(1): 145-149.
    [6]HONG Yu-xing, NING Mei, YAN Xi-wu, CHANG Cheng. Discussion on the Prevention and Treatment of Hypertension with Cognitive Impairment by Intervention of Intestinal Flora with Traditional Chinese Medicine[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(1): 140-144. DOI: 10.14148/j.issn.1672-0482.2021.0140
    [7]WANGZheng-yan, LIZheng-jun. Effect of Dahuang Lidan Tablets on Serum IL-1RA, IL-1β<\i>, IL-18 Levels and Intestinal Flora in Patients with Non-alcoholic Fatty Liver Disease in Damp-heat Accumulation Pattern[J]. Journal of Nanjing University of traditional Chinese Medicine, 2020, 36(5): 762-766.
    [8]LUDong-xue, CHENBing-yu, LIUFeng, SUNZhi-guang, SHANGWen-bin, ZHAOJuan, YUXi-zhong, YANJing. Discussion on Clinical Application of Bitter-Cold Medicine Based on Intestinal Flora[J]. Journal of Nanjing University of traditional Chinese Medicine, 2020, 36(4): 567-572.
    [9]TAOWei-wei, DONGYu, LIULi, XIAODong, WUHao-ran, WUHao-xing, CHENGang, DILiu-qing, WANGHan-qing. Research Progress on the Effect of Intestinal Flora on Depression Based on "Brain-Gut" Axis[J]. Journal of Nanjing University of traditional Chinese Medicine, 2019, 35(2): 234-240.
    [10]QIANJing, KANGAn, DILiu-qing, DIYa-wei, LIJie. Research on the Metabolism of Ginsenoside Rb1 by Intestinal Flora under Anaerobic and Aerobic Conditions in vitro[J]. Journal of Nanjing University of traditional Chinese Medicine, 2015, 31(6): 567-570.
  • Cited by

    Periodical cited type(4)

    1. 王小天,彪雅宁,张一昕,陈健,高雅,张誉方,张睦清. 基于“肠道菌-胆汁酸”轴探讨燮理汤治疗溃疡性结肠炎小鼠的作用机制. 中国实验方剂学杂志. 2025(01): 30-38 .
    2. 刘秀娟,胡凯文,王舒扬,张水秀,王婧筱. 癌“浊”理论现代科学内涵及中医证治思辨. 吉林中医药. 2025(01): 1-5 .
    3. 吕文豪,张亚芬. 肠道微生物在乳腺癌中的研究进展. 检验医学与临床. 2024(06): 832-837 .
    4. 王亚妮,张潇予,刘玉萍,秦晓颖,霍介格,陈彦,张黄琴. 肠道菌群-胆汁酸-FXR轴干预结直肠癌的研究进展及中药干预的现状分析. 药学学报. 2024(11): 3027-3041 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (364) PDF downloads (39) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return