Volume 40 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
LAI Mengting, Memitimin Metsawur, LI Tong, XIAO Ping, SU Shulan, DUAN Jinao. Study on the Enzymatic Deproteinization Technology, Composition Analysis and Immunomodulatory Activity of Isatidis Radix Polysaccharides[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(4): 379-390. doi: 10.14148/j.issn.1672-0482.2024.0379
Citation: LAI Mengting, Memitimin Metsawur, LI Tong, XIAO Ping, SU Shulan, DUAN Jinao. Study on the Enzymatic Deproteinization Technology, Composition Analysis and Immunomodulatory Activity of Isatidis Radix Polysaccharides[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(4): 379-390. doi: 10.14148/j.issn.1672-0482.2024.0379

Study on the Enzymatic Deproteinization Technology, Composition Analysis and Immunomodulatory Activity of Isatidis Radix Polysaccharides

doi: 10.14148/j.issn.1672-0482.2024.0379
  • Received Date: 2024-01-09
    Available Online: 2024-04-24
  •   OBJECTIVE  To optimize the deproteinization process of Isatidis Radix polysaccharides and further explore its immunomodulatory activity, and to provide a scientific basis for the development and utilization of it.  METHODS  The optimum conditions of enzymatic deproteinization were optimized by a single factor combined with the Box-Behnken response surface method. The chemical composition and structural characteristics of deproteinized Isatidis Radix polysaccharides were analyzed by UV-visible spectrum, Fourier transform-infrared spectroscopy, high-performance gel permeation chromatography, high-performance liquid chromatography and scanning electron microscopy. The effects of deproteinized Isatidis Radix Polysaccharide on neutrophils, macrophages, IL-1β and IL-6 in zebrafish were investigated by using a zebrafish immunocompromised model.  RESULTS  The optimal enzymatic deproteinization process was as follows: trypsin 500 U·mL-1, pH 8.0, enzymatic hydrolysis time 5 h, enzymatic hydrolysis temperature 37 ℃. The deproteinization rate was (86.39±0.07)%, and the comprehensive score was (91.15±0.37)%. Ultraviolet, infrared spectroscopy scanning and scanning electron microscopy showed that the protein contained in the crude polysaccharide could be removed by enzymatic method. The relative molecular weight of the polysaccharides were between 5.82 and 60.26 kDa. The monosaccharide mole composition was mannose∶ rhamnose∶galacturonic acid∶glucose∶galactose∶arabinose=2.17∶0.96∶2.90∶83.25∶4.88∶5.84. The results of immune activity evaluation showed that when the concentration of deproteinized Radix Isatidis polysaccharides was 50~300 μg·mL-1, it could significantly increase the density of zebrafish immune cells, increase the number of macrophages, and reduce the content of IL-1β and IL-6 in immunocompromised zebrafish, thus exerting immunomodulatory effects.  CONCLUAION  The enzymatic method can effectively remove the proteins contained in the crude polysaccharides of Isatidis Radix, and the deproteinized Isatidis Radix polysaccharides have certain immunomodulatory effects.

     

  • loading
  • [1]
    YE D, ZHAO Q, DING D, et al. Preclinical pharmacokinetics-related pharmacological effects of orally administered polysaccharides from traditional Chinese medicines: A review[J]. Int J Biol Macromol, 2023, 252: 126484. doi: 10.1016/j.ijbiomac.2023.126484
    [2]
    WANG D Y, LIU Y H, ZHAO W. The adjuvant effects on vaccine and the immunomodulatory mechanisms of polysaccharides from traditional Chinese medicine[J]. Front Mol Biosci, 2021, 8: 655570. doi: 10.3389/fmolb.2021.655570
    [3]
    ZHAO Y, YAN B C, WANG Z Y, et al. Natural polysaccharides with immunomodulatory activities[J]. Mini Rev Med Chem, 2020, 20(2): 96-106. doi: 10.2174/1389557519666190913151632
    [4]
    YU Y, SHEN M Y, SONG Q Q, et al. Biological activities and pharmaceutical applications of polysaccharide from natural resources: A review[J]. Carbohydr Polym, 2018, 183: 91-101. doi: 10.1016/j.carbpol.2017.12.009
    [5]
    XIANG X L, LYU J D, DONG M Y, et al. Radix Isatidis polysaccharide (RIP) resists the infection of QX-type infectious bronchitis virus via the MDA5/TLR3/IRF7 signaling pathway[J]. Poult Sci, 2023, 102(4): 102534. doi: 10.1016/j.psj.2023.102534
    [6]
    TAO W, FU T, HE Z J, et al. Immunomodulatory effects of Radix isatidis polysaccharides in vitro and in vivo[J]. Exp Ther Med, 2021, 22(6): 1405. doi: 10.3892/etm.2021.10841
    [7]
    李海霞, 刘坤璐, 贾培媛, 等. 板蓝根多糖IIP-A-1和IIP-2作为疫苗佐剂的免疫原性[J]. 中国药理学与毒理学杂志, 2019, 33(1): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YLBS201901004.htm

    LI H X, LIU K L, JIA P Y, et al. Immunogenicity of polysaccharides IIP-A-1 and IIP-2 from Isatis indigotica as vaccine adjuvants[J]. Chin J Pharmacol Toxicol, 2019, 33(1): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YLBS201901004.htm
    [8]
    ZENG X T, LI P Y, CHEN X, et al. Effects of deproteinization methods on primary structure and antioxidant activity of Ganoderma lucidum polysaccharides[J]. Int J Biol Macromol, 2019, 126: 867-876. doi: 10.1016/j.ijbiomac.2018.12.222
    [9]
    YAN C, BRUNSON D C, TANG Q, et al. Visualizing engrafted human cancer and therapy responses in immunodeficient zebrafish[J]. Cell, 2019, 177(7): 1903-1914. e14. doi: 10.1016/j.cell.2019.04.004
    [10]
    李懿, 刘夏进, 宿树兰, 等. 模式生物斑马鱼在中药活性筛选和毒性评价中的应用进展与展望[J]. 南京中医药大学学报, 2020, 36(5): 715-720. http://xb.njucm.edu.cn/article/id/zr20200522

    LI Y, LIU X J, SU S L, et al. Application progress and prospect of model organism zebrafish in activity screening and toxicity evaluation of traditional Chinese medicine[J]. J Nanjing Univ Tradit Chin Med, 2020, 36(5): 715-720. http://xb.njucm.edu.cn/article/id/zr20200522
    [11]
    宁奇, 孙培冬, 曹光群, 等. 山药黏液质多糖的酶法脱蛋白工艺及其性能研究[J]. 食品与生物技术学报, 2019, 38(9): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-WXQG201909018.htm

    NING Q, SUN P D, CAO G Q, et al. Deproteinization technology by enzymic method of polysaccharide from yam mucilage and its performance study[J]. J Food Sci Biotechnol, 2019, 38(9): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-WXQG201909018.htm
    [12]
    郭庆晖, 张琨霖, 司茜媛, 等. 红甜菜多糖提取条件优化的研究[J]. 中国糖料, 2022, 44(2): 75-79. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTI202202012.htm

    GUO Q H, ZHANG K L, SI X Y, et al. Study on optimization of extraction conditions of red beet polysaccharide[J]. Sugar Crops China, 2022, 44(2): 75-79. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTI202202012.htm
    [13]
    LORD J M, MIDWINTER M J, CHEN Y F, et al. The systemic immune response to trauma: An overview of pathophysiology and treatment[J]. Lancet, 2014, 384(9952): 1455-1465. doi: 10.1016/S0140-6736(14)60687-5
    [14]
    ZENG X T, LI P Y, CHEN X, et al. Effects of deproteinization methods on primary structure and antioxidant activity of Ganoderma lucidum polysaccharides[J]. Int J Biol Macromol, 2019, 126: 867-876. doi: 10.1016/j.ijbiomac.2018.12.222
    [15]
    LI M Z, WEN J J, HUANG X J, et al. Interaction between polysaccharides and toll-like receptor 4: Primary structural role, immune balance perspective, and 3D interaction model hypothesis[J]. Food Chem, 2022, 374: 131586. doi: 10.1016/j.foodchem.2021.131586
    [16]
    HOWE K, CLARK M D, TORROJA C F, et al. The zebrafish reference genome sequence and its relationship to the human genome[J]. Nature, 2013, 496(7446): 498-503. doi: 10.1038/nature12111
    [17]
    孙萌, 王文地, 丽妍, 等. 基于斑马鱼模型的防风多糖调节免疫作用机制研究[J]. 中国中药杂志, 2023, 48(7): 1916-1926. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202307025.htm

    SUN M, WANG W D, LI Y, et al. Immune regulation mechanism of Saposhnikoviae Radix polysaccharide based on zebrafish model[J]. China J Chin Mater Med, 2023, 48(7): 1916-1926. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202307025.htm
    [18]
    张雪, 赵苑伶, 陈林珍, 等. 基于斑马鱼模型探究多花黄精多糖的免疫调节作用[J]. 世界中医药, 2023, 18(6): 761-765, 772. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZA202306001.htm

    ZHANG X, ZHAO Y L, CHEN L Z, et al. Immune function regulation of Polygonatum cyrtonema Hua polysaccharides based on zebrafish model[J]. World Chin Med, 2023, 18(6): 761-765, 772. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZA202306001.htm
    [19]
    YANG F Q, NAGAHAWATTA D P, YANG H W, et al. In vitro and in vivo immuno-enhancing effect of fucoidan isolated from non-edible brown seaweed Sargassum thunbergii[J]. Int J Biol Macromol, 2023, 253(Pt 5): 127212.
    [20]
    ZHANG N N, MA H, ZHANG Z F, et al. Characterization and immunomodulatory effect of an alkali-extracted galactomannan from Morchella esculenta[J]. Carbohydr Polym, 2022, 278: 118960. doi: 10.1016/j.carbpol.2021.118960
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(3)

    Article Metrics

    Article views (36) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return