Volume 40 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
LUO Xin, CHENG Peng, LU Yin, WEI Zhonghong. Syringic Acid Improves Cholestatic Liver Disease by Regulating Bile Acid Metabolism and Intestinal Barrier[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(4): 350-358. doi: 10.14148/j.issn.1672-0482.2024.0350
Citation: LUO Xin, CHENG Peng, LU Yin, WEI Zhonghong. Syringic Acid Improves Cholestatic Liver Disease by Regulating Bile Acid Metabolism and Intestinal Barrier[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(4): 350-358. doi: 10.14148/j.issn.1672-0482.2024.0350

Syringic Acid Improves Cholestatic Liver Disease by Regulating Bile Acid Metabolism and Intestinal Barrier

doi: 10.14148/j.issn.1672-0482.2024.0350
  • Received Date: 2023-11-13
    Available Online: 2024-04-24
  •   OBJECTIVE  To explore the regulatory effect of syringic acid in cholestatic mice based on bile acid metabolism and intestinal barrier.  METHODS  Twenty mice were randomly divided into control group, model group and low and high dose of syringic acid (70, 140 mg·kg-1) groups. Intrahepatic cholestasis was induced by intraperitoneal injection of α-naphthalene isothiocyanate after 2 h of administration on the fifth day. After the last dose, the changes of body weight and liver mass of mice were recorded. Liver function indexes in serum and histopathology were detected, qPCR verified the expression of tight junction proteins Zonula Occludens Protein 1 (ZO-1), Occludin and Claudin-5 in mouse colon tissues, the changes of metabolites in serum were analyzed by using nontargeted metabolomics, and the changes of total bile acids in liver and feces were detected.  RESULTS  Syringic acid could significantly reduce the serum alanine aminotransferase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) activity, total bilirubin (TBIL) and direct bilirubin (DBIL) levels (P < 0.05, P < 0.01) in the model group mice, and reduce liver damage and necrosis. Syringic acid reduced lymphocyte infiltration in the colon of mice in the model group and restored crypt morphology, while the high-dose syringic acid group significantly increased the mRNA expression levels of ZO-1, Occludin, and Claudin-5 in the colon (P < 0.05). The high-dose intervention of syringic acid significantly upregulated 11 metabolites and 29 metabolites, and the metabolites mainly involved the biosynthesis of secondary metabolites, secondary bile acid biosynthesis and bile secretion pathways. Syringic acid reduced the content of total bile acids in the liver and increased the excretion of total bile acids in feces (P < 0.05, P < 0.01).  CONCLUSION  Syringic acid can significantly improve the phenotype of cholestasis in cholestatic mice, improve the damage of intestinal barrier, and promote the metabolism of bile acids in cholestatic mice, which may be the key pathway for syringic acid to improve cholestasis.

     

  • loading
  • [1]
    JANSEN P L M, GHALLAB A, VARTAK N, et al. The ascending pathophysiology of cholestatic liver disease[J]. Hepatology, 2017, 65(2): 722-738. doi: 10.1002/hep.28965
    [2]
    DYSON J K, BEUERS U, JONES D E J, et al. Primary sclerosing cholangitis[J]. Lancet, 2018, 391(10139): 2547-2559. doi: 10.1016/S0140-6736(18)30300-3
    [3]
    HSU C L, SCHNABL B. The gut-liver axis and gut microbiota in health and liver disease[J]. Nat Rev Microbiol, 2023, 21(11): 719-733. doi: 10.1038/s41579-023-00904-3
    [4]
    SAHOO S M, MAHAPATRA S J. Intrahepatic cholestasis of pregnancy: Are we expecting too much from ursodeoxycholic acid?[J]. Lancet Gastroenterol Hepatol, 2021, 6(11): 886.
    [5]
    CHAPPELL L C, BELL J L, SMITH A, et al. Ursodeoxycholic acid versus placebo in women with intrahepatic cholestasis of pregnancy (PITCHES): A randomised controlled trial[J]. Lancet, 2019, 394(10201): 849-860. doi: 10.1016/S0140-6736(19)31270-X
    [6]
    ARUMUGAM B, BALAGANGADHARAN K, SELVAMURUGAN N. Syringic acid, a phenolic acid, promotes osteoblast differentiation by stimulation of Runx2 expression and targeting of Smad7 by miR-21 in mouse mesenchymal stem cells[J]. J Cell Commun Signal, 2018, 12(3): 561-573. doi: 10.1007/s12079-018-0449-3
    [7]
    OGUT E, ARMAGAN K, GUL Z. The role of syringic acid as a neuroprotective agent for neurodegenerative disorders and future expectations[J]. Metab Brain Dis, 2022, 37(4): 859-880. doi: 10.1007/s11011-022-00960-3
    [8]
    LUO Q Q, GONG P F, SHI R Y, et al. Syringic acid alleviates dextran sulfate sodium-induced colitis in mice by modulating gut microbiota[J]. J Agric Food Chem, 2023, 71(22): 8458-8470. doi: 10.1021/acs.jafc.3c02441
    [9]
    GUZELAD O, OZKAN A, PARLAK H, et al. Protective mechanism of Syringic acid in an experimental model of Parkinson's disease[J]. Metab Brain Dis, 2021, 36(5): 1003-1014. doi: 10.1007/s11011-021-00704-9
    [10]
    SRINIVASULU C, RAMGOPAL M, RAMANJANEYULU G, et al. Syringic acid (SA): A review of its occurrence, biosynthesis, pharmacological and industrial importance[J]. Biomed Pharmacother, 2018, 108: 547-557. doi: 10.1016/j.biopha.2018.09.069
    [11]
    GHEENA S, EZHILARASAN D, SHREE HARINI K, et al. Syringic acid and silymarin concurrent administration inhibits sodium valproate-induced liver injury in rats[J]. Environ Toxicol, 2022, 37(9): 2143-2152. doi: 10.1002/tox.23557
    [12]
    ITOH A, ISODA K, KONDOH M, et al. Hepatoprotective effect of syringic acid and vanillic acid on CCl4-induced liver injury[J]. Biol Pharm Bull, 2010, 33(6): 983-987. doi: 10.1248/bpb.33.983
    [13]
    吴守燕, 王雯婕, 颜晓霞, 等. α-萘异硫氰酸盐(ANIT)诱导的肝损伤作用研究[C]//中国毒理学会药物毒理与安全性评价学术大会(2019年)暨粤港澳大湾区生物医药产业第一届高峰论坛论文集. 广州, 2019: 334.

    WU S Y, WANG W J, YAN X X, etc. Study on the Liver Damage Induced by α-Naphthylisothiocyanate (ANIT)[C]// Academic conference on drug toxicology and safety evaluation of the Chinese toxicological society (2019) and the no. 1 biopharmaceutical industry in the Guangdong-Hong Kong-Macao greater bay area proceedings of the 2019 summit forum. Guangzhou, 2019: 334.
    [14]
    吕超, 石清兰, 覃倩, 等. 小鼠实验性肝损伤模型的研究进展[J]. 中国比较医学杂志, 2019, 29(1): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDX201901019.htm

    LYU C, SHI Q L, QIN Q, et al. A review of experimental liver injury models in mice[J]. Chin J Comp Med, 2019, 29(1): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDX201901019.htm
    [15]
    OU Q Q, QIAN X H, LI D Y, et al. Yinzhihuang attenuates ANIT-induced intrahepatic cholestasis in rats through upregulation of Mrp2 and Bsep expressions[J]. Pediatr Res, 2016, 79(4): 589-595. doi: 10.1038/pr.2015.252
    [16]
    THEILER-SCHWETZ V, ZAUFEL A, SCHLAGER H, et al. Bile acids and glucocorticoid metabolism in health and disease[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(1): 243-251. doi: 10.1016/j.bbadis.2018.08.001
    [17]
    李飞, 陆伦根. 肝功能异常的评估及临床意义[J]. 临床肝胆病杂志, 2015, 31(9): 1543-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-LCGD201509060.htm

    LI F, LU L G. Evaluation of abnormal liver function and its clinical significance[J]. J Clin Hepatol, 2015, 31(9): 1543-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-LCGD201509060.htm
    [18]
    TILG H, ADOLPH T E, TRAUNER M. Gut-liver axis: Pathophysiological concepts and clinical implications[J]. Cell Metab, 2022, 34(11): 1700-1718. doi: 10.1016/j.cmet.2022.09.017
    [19]
    LORENZO-ZÚNIGA V, BARTOLI R, PLANAS R, et al. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats[J]. Hepatology, 2003, 37(3): 551-557. doi: 10.1053/jhep.2003.50116
    [20]
    VERBEKE L, FARRE R, VERBINNEN B, et al. The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats[J]. Am J Pathol, 2015, 185(2): 409-419. doi: 10.1016/j.ajpath.2014.10.009
    [21]
    ABRAHAM C, ABREU M T, TURNER J R. Pattern recognition receptor signaling and cytokine networks in microbial defenses and regulation of intestinal barriers: Implications for inflammatory bowel disease[J]. Gastroenterology, 2022, 162(6): 1602-1616. doi: 10.1053/j.gastro.2021.12.288
    [22]
    MERLEN G, KAHALE N, URSIC-BEDOYA J, et al. TGR5-dependent hepatoprotection through the regulation of biliary epithelium barrier function[J]. Gut, 2020, 69(1): 146-157. doi: 10.1136/gutjnl-2018-316975
    [23]
    SCHNEIDER K M, ALBERS S, TRAUTWEIN C. Role of bile acids in the gut-liver axis[J]. J Hepatol, 2018, 68(5): 1083-1085. doi: 10.1016/j.jhep.2017.11.025
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(3)

    Article Metrics

    Article views (38) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return