Volume 40 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
XIN Liyuan, ZHENG Liang. Study on the Medication Rule and Action Mechanism of Traditional Chinese Medicine Immune Enhancer Based on Data Mining and Network Pharmacology[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(2): 174-183. doi: 10.14148/j.issn.1672-0482.2024.0174
Citation: XIN Liyuan, ZHENG Liang. Study on the Medication Rule and Action Mechanism of Traditional Chinese Medicine Immune Enhancer Based on Data Mining and Network Pharmacology[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(2): 174-183. doi: 10.14148/j.issn.1672-0482.2024.0174

Study on the Medication Rule and Action Mechanism of Traditional Chinese Medicine Immune Enhancer Based on Data Mining and Network Pharmacology

doi: 10.14148/j.issn.1672-0482.2024.0174
  • Received Date: 2023-10-08
    Available Online: 2024-02-26
  •   OBJECTIVE  To explore the compatibility rules of traditional Chinese medicines used to enhance immunity in compound patent prescriptions using data mining method, and analyze the potential mechanism of action of core drugs by network pharmacology and molecular docking technology.  METHODS  The patent data of the immunity enhancing compound of traditional Chinese medicine from the State Intellectual Property Office was mined, the frequency of traditional Chinese medicine, association rules and complex network were analyzed, and core drugs were screened. The TCMSP platform was used to screen the active ingredients of core drugs and predict the targets. Immune-related targets were screened from disease databases OMIM, DrugBank, GeneCards and Uniprot to obtain the intersection targets of core Chinese medicine and immunity. Protein interaction (PPI) analysis and gene ontology (GO) function and pathway enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed for intersection targets. Molecular docking technology was used to verify the active ingredients and key targets of the drug.  RESULTS  According to the analysis of Chinese herbal compound patents, five core drugs were obtained: Astragalus, ginseng, Wolfberry, poria, Angelica. The effective active ingredients corresponding to 214 targets, 1 784 immune-related targets, 55 intersection targets, the key action targets are RELA, TNF, TP53, IL-6. The results of GO analysis showed that the main regulation aspects were the response to bacteria origin molecules, the response to lipopolysaccharide, and the response to biological stimuli. There were 160 KEGG pathways, mainly involving lipid and atherosclerosis, Chagas disease, TNF signaling pathway, cancer pathway and other signaling pathways. The molecular docking results showed that quercetin and kaempferol could bind to RELA, TNF, TP53 and IL-6.  CONCLUSION  The traditional Chinese medicines used in the patent literature to enhance immunity are mainly deficiency tonic drugs, and the main effective components are quercetin, kaempferol and other compounds. RELA, TNF, TP53 and IL-6 are the key targets, which play the role of enhancing immunity through multiple pathways such as lipid, atherosclerosis, Chagas disease, TNF signaling pathway and cancer pathway.

     

  • loading
  • [1]
    尹忞强, 申丽媛, 姜泽昆, 等. 白藜芦醇对免疫力低下小鼠的免疫调节作用研究[J]. 食品科技, 2021, 46(9): 216-220.

    YIN M Q, SHEN L Y, JIANG Z K, et al. Effect of resveratrol on immunomodulatory in immunocompromised mice[J]. Food Sci Technol, 2021, 46(9): 216-220.
    [2]
    SHIN S, OH H, KANG M S, et al. Feasibility and effectiveness assessment of a mobile application for subhealth management: Study protocol for a randomized controlled trial[J]. Medicine, 2019, 98(21): e15704. doi: 10.1097/MD.0000000000015704
    [3]
    苏晓宇. 数据挖掘聚类分析方法在中医临床中的运用[J]. 实用中西医结合临床, 2010, 10(6): 90-93.

    SU X Y. Application of data mining cluster analysis method in TCM clinic[J]. Pract Clin J Integr Tradit Chin West Med, 2010, 10(6): 90-93.
    [4]
    RU J L, LI P, WANG J N, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform, 2014, 6: 13. doi: 10.1186/1758-2946-6-13
    [5]
    MORGAT A, LOMBARDOT T, COUDERT E, et al. Enzyme annotation in UniProtKB using Rhea[J]. Bioinformatics, 2020, 36(6): 1896-1901. doi: 10.1093/bioinformatics/btz817
    [6]
    AMBERGER J S, BOCCHINI C A, SCHIETTECATTE F, et al. OMIM. org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders[J]. Nucleic Acids Res, 2015, 43: 789-798. doi: 10.1093/nar/gku1205
    [7]
    WISHART D S, FEUNANG Y D, GUO A C, et al. DrugBank 5.0: A major update to the DrugBank database for 2018[J]. Nucleic Acids Res, 2018, 46(d1): D1074-D1082. doi: 10.1093/nar/gkx1037
    [8]
    SAFRAN M, DALAH I, ALEXANDER J, et al. GeneCards Version 3: The human gene integrator[J]. Database, 2010, 2010: baq020.
    [9]
    SZKLARCZYK D, MORRIS J H, COOK H, et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible[J]. Nucleic Acids Res, 2017, 45(D1): D362-D368. doi: 10.1093/nar/gkw937
    [10]
    ZHOU Y Y, ZHOU B, PACHE L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nat Commun, 2019, 10(1): 1523. doi: 10.1038/s41467-019-09234-6
    [11]
    KIM S, THIESSEN P A, BOLTON E E, et al. PubChem Substance and Compound databases[J]. Nucleic Acids Res, 2016, 44(D1): D1202-D1213. doi: 10.1093/nar/gkv951
    [12]
    BURLEY S K, BERMAN H M, KLEYWEGT G J, et al. Protein data bank (PDB): The single global macromolecular structure archive[J]. Methods Mol Biol, 2017, 1607: 627-641.
    [13]
    XIA Q Q, LIU M T, LI H, et al. Network pharmacology strategy to investigate the pharmacological mechanism of HuangQiXiXin Decoction on cough variant asthma and evidence-based medicine approach validation[J]. Evid Based Complement Alternat Med, 2020, 2020: 3829092.
    [14]
    王玲玲, 付桃芳, 杜俊英, 等. 基于SPSS Clementine的关联规则分析在中医药数据挖掘中的应用优势和局限[J]. 云南中医学院学报, 2016, 39(6): 98-102.

    WANG L L, FU T F, DU J Y, et al. The application advantages and limitations of association rules analysis based on SPSS clementine in traditional Chinese medicine data mining[J]. J Yunnan Univ Tradit Chin Med, 2016, 39(6): 98-102.
    [15]
    赖菲菲, 孙治中, 黄勇智, 等. 基于网络药理学探讨麻黄治疗儿童哮喘作用机制[J]. 辽宁中医药大学学报, 2019, 21(11): 211-217.

    LAI F F, SUN Z Z, HUANG Y Z, et al. Mechanism of Mahuang in treating childhood asthma based on network pharmacology[J]. J Liaoning Univ Tradit Chin Med, 2019, 21(11): 211-217.
    [16]
    李瑶, 付浩, 李文林, 等. 面部色素性疾病中药面膜专利处方分析及作用机制探讨[J]. 中国皮肤性病学杂志, 2021, 35(8): 925-933.

    LI Y, FU H, LI W L, et al. Analysis of the prescription ingredients and mechanism of action of the patented traditional Chinese medicine mask for facial pigmented diseases[J]. Chin J Dermatovenereology, 2021, 35(8): 925-933.
    [17]
    卢增辉, 袁月, 刘方乐, 等. 基于入血成分分析莲胆消炎方抗溃疡性结肠炎的作用机制[J]. 中药材, 2021, 44(4): 863-872.

    LU Z H, YUAN Y, LIU F L, et al. Mechanism study of Liandan Xiaoyan prescription on attenuating ulcerative colitis based on the components into the blood analysis[J]. J Chin Med Mater, 2021, 44(4): 863-872.
    [18]
    LI B J, RUI J Q, DING X J, et al. Deciphering the multicomponent synergy mechanisms of SiNiSan prescription on irritable bowel syndrome using a bioinformatics/network topology based strategy[J]. Phytomedicine, 2019, 63: 152982. doi: 10.1016/j.phymed.2019.152982
    [19]
    但文超, 刘子彰, 何庆勇, 等. 基于国家专利的中药复方干预慢性胆囊炎的数据挖掘研究[J]. 世界科学技术-中医药现代化, 2021, 23(6): 2043-2050.

    DAN W C, LIU Z Z, HE Q Y, et al. Study on data-mining of compound TCM with national patents for treatment of chronic cholecystitis[J]. Mod Tradit Chin Med Mater Med World Sci Technol, 2021, 23(6): 2043-2050.
    [20]
    李东垣. 珍珠囊补遗药性赋[M]. 上海: 上海科学技术出版社, 1958: 30, 50.

    LI D Y. Pearl capsules supplement the medicinal properties[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1958: 30, 50.
    [21]
    神农本草经[M]. 太原: 山西科学技术出版社, 2018: 14.

    Shen Nong's classic of the materia medica[M]. Taiyuan: Shanxi Scientific & Technical Publishers, 2018: 14.
    [22]
    孟诜. 食疗本草[M]. 北京: 人民卫生出版社, 1984: 16.

    MENG S. Materia medica for dietary therapy[M]. Beijing: People's Medical Publishing House, 1984: 16.
    [23]
    张暖. 齐元富教授治疗乳腺癌用药规律及其核心方调控Wnt/β-catenin信号通路的实验研究[D]. 济南: 山东中医药大学, 2020.

    ZHANG N. Experimental study on professor qi yuanfu's medication rule in treating breast cancer and its core prescription regulating Wnt/β-catenin signal pathway[D]. Jinan: Shandong University of Traditional Chinese Medicine, 2020.
    [24]
    郭换, 刘素娟, 陈林, 等. 仙耆口服液对小鼠免疫力功能影响的研究[J]. 亚太传统医药, 2018, 14(9): 12-13.

    GUO H, LIU S J, CHEN L, et al. Effects of xianqi oral liquid on immune function of mouse[J]. Asia Pac Tradit Med, 2018, 14(9): 12-13.
    [25]
    王文越, 刘珊, 吕琴, 等. 黄芪-当归药对益气活血药理作用研究进展[J]. 中国实验方剂学杂志, 2021, 27(6): 207-216.

    WANG W Y, LIU S, LYU Q, et al. Research progress on pharmacological effect of astragali Radix-angelicae Sinensis Radix on invigorating qi and activating blood[J]. Chin J Exp Tradit Med Formulae, 2021, 27(6): 207-216.
    [26]
    司丽君, 王雪, 王林林, 等. 槲皮素的抗炎免疫及部分机制研究[J]. 中国医药导报, 2021, 18(27): 26-29, 34.

    SI L J, WANG X, WANG L L, et al. Research on anti-inflammatory and immune effects of quercetin and its partial mechanism[J]. China Med Her, 2021, 18(27): 26-29, 34.
    [27]
    王蕊, 刘茜, 李丽. 槲皮素对系统性红斑狼疮模型小鼠肾脏的保护作用及对其免疫功能的影响研究[J]. 临床和实验医学杂志, 2021, 20(21): 2252-2256.

    WANG R, LIU Q, LI L. Protective effect of quercetin on the kidney of mice with systemic lupus erythematosus and its effect on its immune function[J]. J Clin Exp Med, 2021, 20(21): 2252-2256.
    [28]
    SINGH D, TANWAR H, JAYASHANKAR B, et al. Quercetin exhibits adjuvant activity by enhancing Th2 immune response in ovalbumin immunized mice[J]. Biomed Pharmacother, 2017, 90: 354-360. doi: 10.1016/j.biopha.2017.03.067
    [29]
    蒋蕊, 考书娟, 徐小娟, 等. 槲皮素对免疫低下小鼠体液免疫功能的影响[J]. 青岛农业大学学报(自然科学版), 2011, 28(2): 118-120, 125.

    JIANG R, KAO S J, XU X J, et al. Effect of quercetin on humoral immunity function in immunosuppressive mice[J]. J Qingdao Agric Univ Nat Sci, 2011, 28(2): 118-120, 125.
    [30]
    BASU A, DAS A S, SHARMA M, et al. STAT3 and NF-κB are common targets for kaempferol-mediated attenuation of COX-2 expression in IL-6-induced macrophages and carrageenan-induced mouse paw edema[J]. Biochem Biophys Rep, 2017, 12: 54-61.
    [31]
    陈伟明, 熊旭明. 异鼠李素对LPS诱导下THP-1细胞炎症因子释放的影响[J]. 广州医药, 2017, 48(5): 9-13.

    CHEN W M, XIONG X M. The influence of the isorhamnetion on the releasing of inflammatory factor cytokines of the THP-1 cells stimulated by LPS[J]. Guangzhou Med J, 2017, 48(5): 9-13.
    [32]
    钱颖, 黄容容, 孙锐, 等. 人参皂苷Rh2对免疫低下小鼠的免疫调节作用[J]. 医药导报, 2018, 37(12): 1446-1454.

    QIAN Y, HUANG R R, SUN R, et al. Effect of ginsenoside Rh2 on immune regulation of immunocompromised mice[J]. Her Med, 2018, 37(12): 1446-1454.
    [33]
    VLAHOPOULOS S, ADAMAKI M, KHOURY N, et al. Roles of DNA repair enzyme OGG1 in innate immunity and its significance for lung cancer[J]. Pharmacol Ther, 2019, 194: 59-72. doi: 10.1016/j.pharmthera.2018.09.004
    [34]
    WEBSTER J D, VUCIC D. The balance of TNF mediated pathways regulates inflammatory cell death signaling in healthy and diseased tissues[J]. Front Cell Dev Biol, 2020, 8: 365. doi: 10.3389/fcell.2020.00365
    [35]
    王燕, 朱晓庆, 谷新利, 等. 硒化甘草多糖对免疫抑制小鼠免疫功能的影响[J]. 饲料研究, 2023, 46(13): 65-69.

    WANG Y, ZHU X Q, GU X L, et al. Effect of selenide Glycyrrhiza polysaccharide on immune function of immunosuppressed mice[J]. Feed Res, 2023, 46(13): 65-69.
    [36]
    LI S W, HUANG J, YANG F, et al. High expression of PARD3 predicts poor prognosis in hepatocellular carcinoma[J]. Sci Rep, 2021, 11(1): 11078. doi: 10.1038/s41598-021-90507-w
    [37]
    贺小威, 徐玲. 细胞周期相关基因CDKN2A、TP53、RB1和BRCA2在恶性肿瘤中的研究进展[J]. 现代肿瘤医学, 2018, 26(1): 153-157.

    HE X W, XU L. Advances on the role of cell cycle-related genes CDKN2A, TP53, RB1 and BRCA2 in malignancies[J]. J Mod Oncol, 2018, 26(1): 153-157.
    [38]
    尹星星, 杨永晶, 陆杰, 等. 树莓多糖组分RPP-5的结构特征与免疫活性研究[J/OL]. 食品与发酵工业. https://doi.org/10.13995/j.cnki.11-1802/ts.035511.

    YIN X X, YANG Y J, LU J, et al. Structural characteristics and immunomodulatory activity of raspberry polysaccharide RPP-5[J]. Food Ferment Ind. https://doi.org/10.13995/j.cnki.11-1802/ts.035511.
    [39]
    陈泽山, 邓鑫, 朱文琳, 等. 黄芪对肝癌的影响及潜在机制[J]. 中华中医药学刊, 2022, 40(11): 157-160.

    CHEN Z S, DENG X, ZHU W L, et al. Effect of huangqi(astragali Radix) on liver cancer and its potential mechanism[J]. Chin Arch Tradit Chin Med, 2022, 40(11): 157-160.
    [40]
    李瑞, 王宇. 黄芪多糖的抗肿瘤作用机制研究进展[J]. 西部中医药, 2022, 35(9): 150-154.

    LI R, WANG Y. Research progress of anti-tumor mechanism of Astragalus polysaccharide[J]. West J Tradit Chin Med, 2022, 35(9): 150-154.
    [41]
    彭剑岚, 朱永苹, 林寿宁, 等. 黄芪及其活性成分治疗胃癌的作用机制研究进展[J]. 中华中医药学刊, 2023, 41(4): 196-201.

    PENG J L, ZHU Y P, LIN S N, et al. Research progress on mechanism of huangqi(astragali Radix) and its active ingredients treating gastric cancer[J]. Chin Arch Tradit Chin Med, 2023, 41(4): 196-201.
    [42]
    LIBBY P, LICHTMAN A H, HANSSON G K. Immune effector mechanisms implicated in atherosclerosis: From mice to humans[J]. Immunity, 2013, 38(6): 1092-1104. doi: 10.1016/j.immuni.2013.06.009
    [43]
    WEBER C, ZERNECKE A, LIBBY P. The multifaceted contributions of leukocyte subsets to atherosclerosis: Lessons from mouse models[J]. Nat Rev Immunol, 2008, 8(10): 802-815. doi: 10.1038/nri2415
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(4)

    Article Metrics

    Article views (138) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return