Volume 40 Issue 2
Feb.  2024
Turn off MathJax
Article Contents
DU Lili, WANG Gang, LIANG Yan, ZHAO Fan, YING Jiahui, YIN Gang, TANG Decai, BIAN Yong. Study on the Effect of Huangqi-Ezhu-Chonglou Combination on Proliferation and Migration of Colorectal Cancer Cells by Regulating Macrophage Polarization[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(2): 137-144. doi: 10.14148/j.issn.1672-0482.2024.0137
Citation: DU Lili, WANG Gang, LIANG Yan, ZHAO Fan, YING Jiahui, YIN Gang, TANG Decai, BIAN Yong. Study on the Effect of Huangqi-Ezhu-Chonglou Combination on Proliferation and Migration of Colorectal Cancer Cells by Regulating Macrophage Polarization[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(2): 137-144. doi: 10.14148/j.issn.1672-0482.2024.0137

Study on the Effect of Huangqi-Ezhu-Chonglou Combination on Proliferation and Migration of Colorectal Cancer Cells by Regulating Macrophage Polarization

doi: 10.14148/j.issn.1672-0482.2024.0137
  • Received Date: 2023-11-13
    Available Online: 2024-02-26
  •   OBJECTIVE   To investigate the effect of Huangqi-Ezhu-Chonglou combination on macrophage polarization and its mechanism of inhibiting colorectal cancer (CRC) cells proliferation and migration.   METHODS   THP-1 cells were stimulated with phorbol 12-myristate 13-acetate (PMA) and interleukin-4 (IL-4) to establish M2 macrophage polarization model. The experiment was divided into M0 group (PMA treatment), M2 group (PMA+IL-4 treatment), and M2+ Huangqi-Ezhu-Chonglou combination group (PMA+IL-4+Huangqi-Ezhu-Chonglou combination treatment).The effect of Huangqi-Ezhu-Chonglou combination freeze-dried powder on the viability of macrophage was detected by CCK-8 method. The expression of macrophage polarization markers, glutaminase (GLS) mRNA and protein was detected by qPCR and Western blot. The levels of interleukin-10 (IL-10), transforming growth factor-β (TGF-β) and tumor necrosis factor-α (TNF-α) in cell supernatant were detected by ELISA. CCK-8 method and Transwell assays were used to detect the proliferation and migration of HCT116 cells intervened by the supernatant of macrophage culture treated with Huangqi-Ezhu-Chonglou combination, namely conditioned medium (CM).   RESULTS   Compared with the M0 group, the expression levels of IL-10, mannose receptor (CD206), arginase 1 (ARG1), and GLS mRNA and protein in the M2 group were significantly increased (P < 0.01, P < 0.001), the levels of IL-10 and TGF-β secreted by macrophages were significantly increased (P < 0.01, P < 0.001); compared with the M2 group, the M2+ Huangqi-Ezhu-Chonglou combination group had significantly reduced IL-10, CD206, ARG1, and GLS mRNA and protein expression (P < 0.05, P < 0.01), the mRNA and protein levels of TNF-α and inducible nitric oxide synthase (iNOS) were significantly increased (P < 0.05, P < 0.01, P < 0.001), the interleukin-1β (Interleukin-1β, IL-1β) mRNA expression significantly increased (P < 0. 01), and the contents of IL-10 and TGF-β in the cell supernatant significantly decreased (P < 0.05, P < 0.01), while TNF-α content significantly increased (P < 0.01). CCK-8 and Transwell results showed that compared with the M0-CM group, the M2-CM promoted the proliferation and migration of HCT116 cells (P < 0.01, P < 0.001), the M2+ Huangqi-Ezhu-Chonglou-CM group significantly inhibited HCT116 cell proliferation and reduced cell migration compared to the M2-CM group (P < 0.01, P < 0.001).   CONCLUSION   Huangqi-Ezhu-Chonglou combination can inhibit colorectal cancer cells proliferation and migration by regulating macrophage polarization, and its mechanism may be related to the changes in the expression of GLS, a key enzyme in glutamine metabolism.

     

  • loading
  • [1]
    XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-590. doi: 10.1097/CM9.0000000000002108
    [2]
    BOUTILIER A J, ELSAWA S F. Macrophage polarization states in the tumor microenvironment[J]. Int J Mol Sci, 2021, 22(13): 6995. doi: 10.3390/ijms22136995
    [3]
    WANG H, TIAN T, ZHANG J H. Tumor-associated macrophages (TAMs) in colorectal cancer (CRC): From mechanism to therapy and prognosis[J]. Int J Mol Sci, 2021, 22(16): 8470. doi: 10.3390/ijms22168470
    [4]
    CHERUKU S, RAO V, PANDEY R, et al. Tumor-associated macrophages employ immunoediting mechanisms in colorectal tumor progression: Current research in Macrophage repolarization immunotherapy[J]. Int Immunopharmacol, 2023, 116: 109569. doi: 10.1016/j.intimp.2022.109569
    [5]
    LI Y T, CHEN Z M, HAN J H, et al. Functional and therapeutic significance of tumor-associated macrophages in colorectal cancer[J]. Front Oncol, 2022, 12: 781233. doi: 10.3389/fonc.2022.781233
    [6]
    唐德才. 活血化瘀药在抗肿瘤及转移中的运用思考[J]. 南京中医药大学学报, 2019, 35(1): 1-4. http://xb.njucm.edu.cn/article/id/zr20190101

    TANG D C. Thinking on the application of blood-activating and stasis-resolving medicine in anti-tumor and metastasis[J]. J Nanjing Univ Tradit Chin Med, 2019, 35(1): 1-4. http://xb.njucm.edu.cn/article/id/zr20190101
    [7]
    梁研, 孙若岚, 刘夫艳, 等. 基于网络药理学和实验验证分析黄芪-莪术-蚤休角药配伍抗结直肠癌的作用机制[J]. 中国中药杂志, 2022, 47(3): 776-785.

    LIANG Y, SUN R L, LIU F Y, et al. Anti-colorectal cancer mechanism of Astragali Radix-Curcumae Rhizoma-Paridis Rhizoma based on network pharmacology and experimental verification[J]. China J Chin Mater Med, 2022, 47(3): 776-785.
    [8]
    刘甜甜, 卞勇, 关汉卿, 等. 黄芪-莪术-重楼配伍降低血管内皮通透性抑制结肠癌转移作用的研究[J]. 南京中医药大学学报, 2022, 38(2): 115-121. doi: 10.14148/j.issn.1672-0482.2022.0115

    LIU T T, BIAN Y, GUAN H Q, et al. Study on the inhibitory effect of huangqi-ezhu-Chonglou combination on metastasis of colon cancer by reducing vascular endothelial permeability[J]. J Nanjing Univ Tradit Chin Med, 2022, 38(2): 115-121. doi: 10.14148/j.issn.1672-0482.2022.0115
    [9]
    关汉卿, 刘甜甜, 梁研, 等. 黄芪-莪术-重楼配伍对结肠癌原位移植瘤模型裸鼠肿瘤及癌旁组织中侵袭性伪足相关蛋白表达的影响[J]. 中医杂志, 2021, 62(16): 1427-1433.

    GUAN H Q, LIU T T, LIANG Y, et al. Effect of huangqi-ezhu-Chonglou combination on the expression of invadopodia-related proteins in the tumors and paracancerous tissues of nude mice with colon cancer-derived orthotopic transplant model[J]. J Tradit Chin Med, 2021, 62(16): 1427-1433.
    [10]
    TANG Z Y, HU X R, AN C M, et al. The potential molecular pathways of Astragaloside-Ⅳ in colorectal cancer: A systematic review[J]. Biomed Pharmacother, 2023, 167: 115625. doi: 10.1016/j.biopha.2023.115625
    [11]
    PAUL S, SA G. Curcumin as an adjuvant to cancer immunotherapy[J]. Front Oncol, 2021, 11: 675923. doi: 10.3389/fonc.2021.675923
    [12]
    张小力, 刘芹, 刘宝瑞. 重楼皂苷抗肿瘤及调节肿瘤免疫微环境研究进展[J]. 陕西中医, 2021, 42(11): 1640-1643. doi: 10.3969/j.issn.1000-7369.2021.11.033

    ZHANG X L, LIU Q, LIU B R. Advances in anti-tumor effects of Paris saponins[J]. Shaanxi J Tradit Chin Med, 2021, 42(11): 1640-1643. doi: 10.3969/j.issn.1000-7369.2021.11.033
    [13]
    GU J F, SUN R L, TANG D C, et al. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. suppresses growth and metastasis of colorectal cancer cells by inhibiting M2 macrophage polarization via a Sp1/ZFAS1/miR-153-3p/CCR5 regulatory axis[J]. Cell Biol Toxicol, 2022, 38(4): 679-697. doi: 10.1007/s10565-021-09679-w
    [14]
    杨琦, 孙正, 朱亦邈, 等. 黄芪-莪术配伍调控EMT对结肠癌HT-29细胞增殖、迁移和侵袭能力的影响[J]. 中国中药杂志, 2023, 48(3): 736-743.

    YANG Q, SUN Z, ZHU Y M, et al. Astragali Radix-Curcumae Rhizoma combination inhibits proliferation, migration, and invasion of colon cancer HT-29 cells by regulating EMT[J]. China J Chin Mater Med, 2023, 48(3): 736-743.
    [15]
    彭巍, 唐建清, 龚辉, 等. 健脾消癌方治疗对大肠癌肝转移患者临床疗效、血管生成因子及QLQ-c30评分的影响[J]. 四川中医, 2021, 39(8): 76-79.

    PENG W, TANG J Q, GONG H, et al. Effect of Jianpi xiaoai recipe on clinical efficacy, angiogenesis factors and QLQ-c30 score for patients with liver metastases of colorectal cancer[J]. J Sichuan Tradit Chin Med, 2021, 39(8): 76-79.
    [16]
    郭文晖, 齐卓操, 关汉卿, 等. 黄芪-莪术配伍联合5-氟尿嘧啶对CT26. WT结肠癌原位移植瘤模型小鼠中Th17/Treg平衡及肿瘤相关mRNA和蛋白表达的影响[J]. 中国中药杂志, 2022, 47(1): 167-175.

    GUO W H, QI Z C, GUAN H Q, et al. Effect of Astragali Radix-Curcumae Rhizoma compatibility combined with 5-fluorouracil on Th17/Treg balance and tumor-related mRNA and protein expression in orthotopic xenograft model mice of CT26. WT colorectal carcinoma[J]. China J Chin Mater Med, 2022, 47(1): 167-175.
    [17]
    MOREIRA LOPES T C, MOSSER D M, GONÇALVES R. Macrophage polarization in intestinal inflammation and gut homeostasis[J]. Inflamm Res, 2020, 69(12): 1163-1172. doi: 10.1007/s00011-020-01398-y
    [18]
    VÄYRYNEN J P, HARUKI K, LAU M C, et al. The prognostic role of macrophage polarization in the colorectal cancer microenvironment[J]. Cancer Immunol Res, 2021, 9(1): 8-19. doi: 10.1158/2326-6066.CIR-20-0527
    [19]
    LIU F, RAN F, HE H Q, et al. Astragaloside Ⅳ exerts anti-tumor effect on murine colorectal cancer by re-educating tumor-associated macrophage[J]. Arch Immunol Ther Exp, 2020, 68(6): 33. doi: 10.1007/s00005-020-00598-y
    [20]
    YU J L, DENG H B, XU Z Y. Targeting macrophage priming by polyphyllin Ⅷ triggers anti-tumor immunity via STING-governed cytotoxic T-cell infiltration in lung cancer[J]. Sci Rep, 2020, 10(1): 21360. doi: 10.1038/s41598-020-77800-w
    [21]
    YANG Y, YANG Y, CHEN M L, et al. Injectable shear-thinning polylysine hydrogels for localized immunotherapy of gastric cancer through repolarization of tumor-associated macrophages[J]. Biomater Sci, 2021, 9(19): 6597-6608. doi: 10.1039/D1BM01053K
    [22]
    WONG C C, XU J Y, BIAN X Q, et al. In colorectal cancer cells with mutant KRAS, SLC25A22-mediated glutaminolysis reduces DNA demethylation to increase WNT signaling, stemness, and drug resistance[J]. Gastroenterology, 2020, 159(6): 2163-2180. e6. doi: 10.1053/j.gastro.2020.08.016
    [23]
    LEONE R D, ZHAO L, ENGLERT J M, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion[J]. Science, 2019, 366(6468): 1013-1021. doi: 10.1126/science.aav2588
    [24]
    WANG Y, WANG D, YANG L, et al. Metabolic reprogramming in the immunosuppression of tumor-associated macrophages[J]. Chin Med J, 2022, 135(20): 2405-2416. doi: 10.1097/CM9.0000000000002426
    [25]
    WANG J, MI S C, DING M Y, et al. Metabolism and polarization regulation of macrophages in the tumor microenvironment[J]. Cancer Lett, 2022, 543: 215766. doi: 10.1016/j.canlet.2022.215766
    [26]
    KIM G W, LEE D H, JEON Y H, et al. Glutamine synthetase as a therapeutic target for cancer treatment[J]. Int J Mol Sci, 2021, 22(4): 1701. doi: 10.3390/ijms22041701
    [27]
    FENG Y F, YANG X, HUANG J H, et al. Pharmacological inhibition of glutaminase 1 attenuates alkali-induced corneal neovascularization by modulating macrophages[J]. Oxid Med Cell Longev, 2022, 2022: 1106313.
    [28]
    MAI Z Y, ZHONG J, ZHANG J S, et al. Carrier-free immunotherapeutic nano-booster with dual synergistic effects based on glutaminase inhibition combined with photodynamic therapy[J/OL]. ACS Nano, 2023. doi: 10.1021/acsnano.2c11037.
    [29]
    BIAN Y, YIN G, WANG G, et al. Degradation of HIF-1α induced by curcumol blocks glutaminolysis and inhibits epithelial-mesenchymal transition and invasion in colorectal cancer cells[J]. Cell Biol Toxicol, 2023, 39(5): 1957-1978. doi: 10.1007/s10565-021-09681-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (143) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return