Volume 39 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
LIU Tao, JI Jing, WANG Ling-chong, CHENG Jian-ming. Exploring the Mechanism of Polygonatum cyrtonema Hua in Improving Inflammatory Fatigue Based on LC-MS Analysis and Network Pharmacology Research[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(9): 879-887. doi: 10.14148/j.issn.1672-0482.2023.0879
Citation: LIU Tao, JI Jing, WANG Ling-chong, CHENG Jian-ming. Exploring the Mechanism of Polygonatum cyrtonema Hua in Improving Inflammatory Fatigue Based on LC-MS Analysis and Network Pharmacology Research[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(9): 879-887. doi: 10.14148/j.issn.1672-0482.2023.0879

Exploring the Mechanism of Polygonatum cyrtonema Hua in Improving Inflammatory Fatigue Based on LC-MS Analysis and Network Pharmacology Research

doi: 10.14148/j.issn.1672-0482.2023.0879
  • Received Date: 2023-07-05
    Available Online: 2023-10-20
  •   OBJECTIVE  To evaluate the effective components and active mechanism of Polygonatum cyrtonema Hua in relieving inflammatory fatigue based on LC-MS analysis and network pharmacology.  METHODS  The component information of Polygonatum cyrtonema Hua was obtained through LC-MS, and the information on the targets of the components was collected. After comparing the gene targets of inflammatory fatigue, the common targets were obtained as the targets of Polygonatum cyrtonema Hua; GO functional enrichment analysis and KEGG pathway enrichment analysis of the shared gene targets were performed; finally, a pro-inflammatory cell model was used to verify the anti-inflammatory activity of Polygonatum cyrtonema Hua.  RESULTS  A total of 62 chemical components of Polygonatum cyrtonema Hua were detected by LC-MS, and 208 common targets between components and diseases were found. Network pharmacological analysis suggested that N-cis-feruloyl tyramide, β-sitosterol, 11E-octadecadienoic acid, β-D-glucuronic acid and liquiritigenin are important active components of Polygonatum cyrtonema Hua against inflammatory fatigue, and STAT3, MAPK3, AKT1, JUN, TP53, EGFR, CASP3 and IL-6 may be the key biological targets. The main biological pathways are focused on 5-HT aminergic synapses, calcium signaling pathway, JAK-STAT signaling and NF-κB pathway. The cell experiments showed that Polygonatum cyrtonema Hua had a significant inhibitory effect on LPS-induced macrophage secretion of inflammatory cytokines, indicating that Polygonatum cyrtonema Hua can exert certain anti-inflammatory actions.  CONCLUSION  The relatively large number of small molecule components in Polygonatum cyrtonema Hua can act on multiple biological targets through various biological pathways to improve inflammation-related fatigue in the body.

     

  • loading
  • [1]
    成佳, 吕萌, 赵恋峰. 磷酸肌酸钠对胃癌根治术后疲劳综合征患者炎症因子、营养指标及免疫功能的影响[J]. 海南医学, 2021, 32(22): 2880-2883. https://www.cnki.com.cn/Article/CJFDTOTAL-HAIN202122007.htm

    CHENG J, LYU M, ZHAO LF. Effects of sodium creatine phosphate on inflammatory factors, nutritional indexes, and immune function in patients with fatigue syndrome after radical gastrectomy for gastric cancer[J]. Hainan Med J, 2021, 32(22): 2880-2883. https://www.cnki.com.cn/Article/CJFDTOTAL-HAIN202122007.htm
    [2]
    张子腾. NLRP3炎症小体在小鼠疲劳样行为中的作用及机制研究[D]. 上海: 中国人民解放军海军军医大学, 2018.

    ZHANG ZT. Molecular mechanism study of NLRP3 inflammasome on fatigue-like behaviors[D]. Shanghai: The PLA Naval Medical University, 2018.
    [3]
    ARNETT SV, CLARK IA. Inflammatory fatigue and sickness behaviour-lessons for the diagnosis and management of chronic fatigue syndrome[J]. J Affect Disord, 2012, 141(2/3): 130-142.
    [4]
    张凯, 张昭, 范永芳, 等. 药食同源药材黄精玉竹营养及生物活性成分分析[J]. 中国现代中药, 2022, 24(8): 1463-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-YJXX202208011.htm

    ZHANG K, ZHANG Z, FAN YF, et al. Nutritional and bioactive components of polygonati rhizoma and polygonati odorati rhizoma with medicinal and edible property[J]. Mod Chin Med, 2022, 24(8): 1463-1472. https://www.cnki.com.cn/Article/CJFDTOTAL-YJXX202208011.htm
    [5]
    马永强, 沈盈, 王鑫, 等. 黄精基酒对ICR小鼠抗氧化及抗疲劳作用[J]. 食品研究与开发, 2023, 44(2): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SPYK202302005.htm

    MA YQ, SHEN Y, WANG X, et al. Anti-oxidant and anti-fatigue effects of Polygonatum-based wine on ICR mice[J]. Food Res Dev, 2023, 44(2): 29-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SPYK202302005.htm
    [6]
    罗霜. 黄精-筠姜-肉桂混合水提物抗衰老活性研究及其功能性食品开发[D]. 成都: 成都大学, 2023.

    LUO S. Study on the anti-aging activity of aqueous extracts of polygonati rhizoma-zingiberis rhizoma-cinnamomi cortex mixture and its functional food development[D]. Chengdu: Chengdu University, 2023.
    [7]
    何沛煜, 张军银, 赵永艳, 等. 黄精药用价值及保健食品应用研究进展[J]. 海峡药学, 2021, 33(12): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HAIX202112010.htm

    HE PY, ZHANG JY, ZHAO YY, et al. Advances of medicinal value and health food application of Polygonatum[J]. Strait Pharm J, 2021, 33(12): 31-35. https://www.cnki.com.cn/Article/CJFDTOTAL-HAIX202112010.htm
    [8]
    潘文洁, 孙吉旭. 青稞黄精保健粥的研制[J]. 农产品加工, 2023(8): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-NCPJ202308004.htm

    PAN WJ, SUN JX. Development of highland barley and Polygonatum sibiricum health porridge[J]. Farm Prod Process, 2023(8): 13-15. https://www.cnki.com.cn/Article/CJFDTOTAL-NCPJ202308004.htm
    [9]
    杨咪, 罗长浩, 陈胜发, 等. 黄精化学成分作用与健康养生研究进展[J]. 中国食品工业, 2023(1): 112-114, 124. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZG202301024.htm

    YANG M, LUO CH, CHEN SF, et al. Research progress on chemical constituents and health preservation of Polygonatum sibiricum[J]. China Food Ind, 2023(1): 112-114, 124. https://www.cnki.com.cn/Article/CJFDTOTAL-SPZG202301024.htm
    [10]
    范佐旺, 柯晓燕, 陈靓雯, 等. 多花黄精的化学成分及药理研究进展[J]. 中医药信息, 2020, 37(5): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXN202005029.htm

    FAN ZW, KE XY, CHEN LW, et al. Advances in chemical constituents and pharmacological acitivies of Polygonatum cyrtonema Hua[J]. Inf Tradit Chin Med, 2020, 37(5): 119-126. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXN202005029.htm
    [11]
    陈高策, 吴鑫雨, 陈永, 等. 基于网络药理学和分子对接探讨复方黄精大蜜丸对抗衰老的机制[J]. 食品工业, 2023, 44(2): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-SPGY202302031.htm

    CHEN GC, WU XY, CHEN Y, et al. Anti-aging mechanism of compound Huangjing big honeyed pills based on network pharmacology and molecular docking[J]. Food Ind, 2023, 44(2): 135-140. https://www.cnki.com.cn/Article/CJFDTOTAL-SPGY202302031.htm
    [12]
    王思成, 曾婷, 易攀, 等. 多花黄精的化学成分及质量控制研究进展[J]. 科学技术创新, 2017(29): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HLKX201729001.htm

    WANG SC, ZENG T, YI P, et al. Research progress on chemical constituents and quality control of Polygonatum multiflorum[J]. Sci Technol Innov, 2017(29): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HLKX201729001.htm
    [13]
    南易. 黄精属中药玉竹和黄精的质量分析研究[D]. 天津: 天津中医药大学, 2021.

    NAN Y. Analysis on the quality of polygonati odorati rhizoma and polygonati rhizoma[D]. Tianjin: Tianjin University of Traditional Chinese Medicine, 2021.
    [14]
    杨波, 黄金月, 郑时嘉, 等. 基于UPLC-Q/TOF-MS技术的东北黄精、多花黄精及滇黄精成分分析[J]. 中医药学报, 2022, 50(10): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXB202210008.htm

    YANG B, HUANG JY, ZHENG SJ, et al. Component analysis of Polygonatum sibiricum, Polygonatum cyrtonema and Polygonatum kingianum based on UPLC-Q/TOF-MS technology[J]. Acta Chin Med Pharmacol, 2022, 50(10): 43-51. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXB202210008.htm
    [15]
    ZENG T, TANG YR, LI B, et al. Chemical characterization of constituents from Polygonatum cyrtonema Hua and their cytotoxic and antioxidant evaluation[J]. Nat Prod Res, 2020, 34(17): 2482-2489.
    [16]
    张海潮, 郑浩英, 曾瑛, 等. 多花黄精炮制过程中主要成分的变化分析[J]. 广东化工, 2021, 48(17): 5-6, 4. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG202117004.htm

    ZHANG HC, ZHENG HY, ZENG Y, et al. Analysis of main components in the processing of Polygonatum cyrtonema Hua[J]. Guangdong Chem Ind, 2021, 48(17): 5-6, 4. https://www.cnki.com.cn/Article/CJFDTOTAL-GDHG202117004.htm
    [17]
    周蝶. 盘龙灸治疗慢性疲劳综合征的疗效观察及对IL-2和IL-6等免疫相关因子的影响[D]. 长沙: 湖南中医药大学, 2020.

    ZHOU D. Observation on therapeutic effect of Panlong moxibustion on chronic fatigue syndrome and its influence on immune related factors such as IL-2 and IL-6[D]. Changsha: Hunan University of Chinese Medicine, 2020.
    [18]
    管雪婷, 韩胜强, 谢元, 等. 莲藕渣多糖通过MAPK/NF-κB途径调节小鼠腹腔巨噬细胞的免疫应答[J]. 现代食品科技, 2022, 38(12): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-GZSP202212020.htm

    GUAN XT, HAN SQ, XIE Y, et al. Lotus root residue polysaccharide regulate the immune response of mouse peritoneal macrophages via MAPK/NF-κB pathway[J]. Mod Food Sci Technol, 2022, 38(12): 161-168. https://www.cnki.com.cn/Article/CJFDTOTAL-GZSP202212020.htm
    [19]
    高月虹, 刘梦茹, 杨宪鑫, 等. 芳香烃受体通过p38MAPK/p65NF-κB信号通路调节绿脓菌素诱导的巨噬细胞中炎症因子的表达[J]. 中国药理学通报, 2023, 39(7): 1296-1302. https://www.cnki.com.cn/Article/CJFDTOTAL-YAOL202307016.htm

    GAO YH, LIU MR, YANG XX, et al. Aryl hydrocarbon receptors regulate pyocyanin-induced inflammatory factor expression in macrophages via p38MAPK/p65NF-κB signaling pathway[J]. Chin Pharmacol Bull, 2023, 39(7): 1296-1302. https://www.cnki.com.cn/Article/CJFDTOTAL-YAOL202307016.htm
    [20]
    杨言言, 李惠珍, 艾志福, 等. 中药防治疲劳作用机制的研究进展[J]. 中草药, 2023, 54(7): 2309-2318. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202307028.htm

    YANG YY, LI HZ, AI ZF, et al. Research progress on mechanism of traditional Chinese medicine in prevention and treatment of fatigue[J]. Chin Tradit Herb Drugs, 2023, 54(7): 2309-2318. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202307028.htm
    [21]
    KANDHAYA-PILLAI R, YANG XM, TCHKONIA T, et al. TNF-α/IFN-γ synergy amplifies senescence-associated inflammation and SARS-CoV-2 receptor expression via hyper-activated JAK/STAT1[J]. Aging Cell, 2022, 21(6): e13646.
    [22]
    BARNABEI L, LAPLANTINE E, MBONGO W, et al. NF-κB: At the borders of autoimmunity and inflammation[J]. Front Immunol, 2021, 12: 716469.
    [23]
    仝建松. 基于Janus激酶2/信号转导和转录激活因子3信号通路探讨参苓白术散对溃疡性结肠炎模型大鼠炎症抑制作用研究[J]. 陕西中医, 2021, 42(8): 1010-1015. https://www.cnki.com.cn/Article/CJFDTOTAL-SXZY202108006.htm

    TONG JS. Study on the inhibitory effect of Shenling Baizhu Powder on inflammation of ulcerative colitis model rats based on Janus kinase 2/signal transduction and transcription activator 3 signaling pathway[J]. Shaanxi J Tradit Chin Med, 2021, 42(8): 1010-1015. https://www.cnki.com.cn/Article/CJFDTOTAL-SXZY202108006.htm
    [24]
    杨光. TNF-NF-κB通路、JAK-STAT通路及IFN-γ在结节性红斑发病机制中作用的探究[D]. 北京: 北京协和医学院, 2020.

    YANG G. The role of TNF-NF-κB pathway, JAK-STAT pathway and IFN-γ in pathogenesis of erythema nodosum[D]. Beijing: Peking Union Medical College, 2020.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article Metrics

    Article views (178) PDF downloads(29) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return