Volume 39 Issue 5
May  2023
Turn off MathJax
Article Contents
LI Yu-xuan, LIU Chun-liang, YUAN Qin, CHEN Ting, JIANG Yan-tao, YAO Fei, SUN Hua, HAO Min-xia, ZHANG Lu-rong, LIU Min. Mechanism of Zhuidu Formula Regulating c-JUN, Inhibiting Abnormal Glycosylation, and Reversing Drug Resistance of Triple Negative Breast Cancer[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(5): 474-482. doi: 10.14148/j.issn.1672-0482.2023.0474
Citation: LI Yu-xuan, LIU Chun-liang, YUAN Qin, CHEN Ting, JIANG Yan-tao, YAO Fei, SUN Hua, HAO Min-xia, ZHANG Lu-rong, LIU Min. Mechanism of Zhuidu Formula Regulating c-JUN, Inhibiting Abnormal Glycosylation, and Reversing Drug Resistance of Triple Negative Breast Cancer[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(5): 474-482. doi: 10.14148/j.issn.1672-0482.2023.0474

Mechanism of Zhuidu Formula Regulating c-JUN, Inhibiting Abnormal Glycosylation, and Reversing Drug Resistance of Triple Negative Breast Cancer

doi: 10.14148/j.issn.1672-0482.2023.0474
  • Received Date: 2022-10-11
    Available Online: 2023-05-19
  •   OBJECTIVE  To investigate the mechanism of reversal of drug resistance in triple negative breast cancer (TNBC) by Zhuidu Formula from the perspective of c-JUN-regulated glycosylation.  METHODS  MTT was used to detect cell proliferation. Western blot was used to detect the expression of c-JUN, β3GnT8, ppGalNAc-T1/2, CD147, and the drug resistance proteins BCRP and MDR1. MDA-MB-231/ADR cells overexpressing c-JUN were established using transfected c-JUN plasmids. In vivo experiments were performed by in situ transplantation of drug-resistant TNBC into nude mice.  RESULTS  Zhuidu Formula can significantly inhibit the proliferation of MDA-MB-231/ADR cells (P < 0.01), with a time-effect and dose-effect relationship. It also significantly inhibited the tumor weight of drug-resistant TNBC transplanted nude mice in situ (P < 0.01), reduced the expression of drug-resistant proteins BCRP and MDR1 (P < 0.01), and significantly decreased the expression of c-JUN, β3GnT8, ppGalNAc-T1/2, CD147 proteins (P < 0.01). After overexpression of c-JUN, the expression of β3GnT8, ppGalNAc T1/2, CD147, BCRP and MDR1 all showed an increase compared with the blank plasmid control group (P < 0.05, P < 0.01). The blank plasmid had no effect on the expression of the above proteins (compared with the blank control group, P > 0.05). Zhuidu Formula can significantly reduce the expression of the above proteins after overexpressing c-JUN, but the expression levels were still significantly higher than those in the blank plasmid group (P < 0.05, P < 0.01).  CONCLUSION  By acting on the regulatory factor c-JUN, Zhuidu Formula down-regulated the activation of β3GnT8 and ppGalNAc-T1/2, thereby inhibiting the glycosylation modification of CD147 and leading to the down-regulation of drug-resistant proteins BCRP and MDR1 to reverse TNBC drug resistance.

     

  • loading
  • [1]
    SINGH DD, YADAV DK. TNBC: Potential targeting of multiple receptors for a therapeutic breakthrough, nanomedicine, and immunotherapy[J]. Biomedicines, 2021, 9(8): 876. doi: 10.3390/biomedicines9080876
    [2]
    MUSTACCHI G, DE LAURENTIIS M. The role of taxanes in triple-negative breast cancer: Literature review[J]. Drug Des Devel Ther, 2015, 9: 4303-4318.
    [3]
    CHO B, HAN YN, LIAN M, et al. Evaluation of racial/ethnic differences in treatment and mortality among women with triple-negative breast cancer[J]. JAMA Oncol, 2021, 7(7): 1016-1023. doi: 10.1001/jamaoncol.2021.1254
    [4]
    XU XD, ZHANG L, HE XG, et al. TGF-β plays a vital role in triple-negative breast cancer (TNBC) drug-resistance through regulating stemness, EMT and apoptosis[J]. Biochem Biophys Res Commun, 2018, 502(1): 160-165. doi: 10.1016/j.bbrc.2018.05.139
    [5]
    LÓPEZ-OZUNA VM, HACHIM IY, HACHIM MY, et al. Prolactin modulates TNBC aggressive phenotype limiting tumorigenesis[J]. Endocr Relat Cancer, 2019, 26(3): 321-337. doi: 10.1530/ERC-18-0523
    [6]
    张悦, 林怡, 陶丽. 中医药逆转抗肿瘤药物耐药的机制探讨[J/OL]. 中华中医药学刊: 1-20[2022-11-03].

    ZHANG Y, LIN Y, TAO L. Mechanism exploration of traditional Chinese medicine reversing antitumor drug resistance[J/OL]. Chin J Tradit Chin Med: 1-20[2022-11-03].
    [7]
    周昳雯, 张乐吟, 孙磊涛, 等. 中医药逆转化疗耐药的新兴策略和有效途径[J]. 时珍国医国药, 2021, 32(4): 927-930. doi: 10.3969/j.issn.1008-0805.2021.04.45

    ZHOU YW, ZHANG LY, SUN LT, et al. Emerging strategies and effective approaches of traditional Chinese medicine for reversing chemotherapy resistance[J]. Lishizhen Med Mater Med Res, 2021, 32(4): 927-930. doi: 10.3969/j.issn.1008-0805.2021.04.45
    [8]
    YANG ZM, ZHANG QH, YU LH, et al. The signaling pathways and targets of traditional Chinese medicine and natural medicine in triple-negative breast cancer[J]. J Ethnopharmacol, 2021, 264: 113249. doi: 10.1016/j.jep.2020.113249
    [9]
    刘敏, 王明武. 解毒破瘀法抑制三阴性乳腺癌复发与转移的临床研究[J]. 南京中医药大学学报, 2016, 32(2): 111-113. doi: 10.14148/j.issn.1672-0482.2016.0111

    LIU M, WANG MW. Clinical research on the inhibition of recurrence and metastasis of triple negative breast cancer with the method of detoxification and blood stasis dissipating[J]. J Nanjing Univ Tradit Chin Med, 2016, 32(2): 111-113. doi: 10.14148/j.issn.1672-0482.2016.0111
    [10]
    王阶, 郭丽丽, 王永炎. 中药方剂有效成(组) 分配伍研究[J]. 中国中药杂志, 2006, 31(1): 5-9. doi: 10.3321/j.issn:1001-5302.2006.01.001

    WANG J, GUO LL, WANG YY. Study on combination components and effectiveness of Chinese traditional herbal formulas[J]. China J Chin Mater Med, 2006, 31(1): 5-9. doi: 10.3321/j.issn:1001-5302.2006.01.001
    [11]
    张伯礼, 王永炎. 方剂关键科学问题的基础研究: 以组分配伍研制现代中药[J]. 中国天然药物, 2005, 3(5): 258-261. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTR200505002.htm

    ZHANG BL, WANG YY. Basic research on key scientific problems of prescription—Development of modern Chinese medicine by component compatibility[J]. Chin J Nat Med, 2005, 3(5): 258-261. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTR200505002.htm
    [12]
    刘敏, 章永红, 颜晓静, 等. 杉蟾藤成分复方诱导ER(+) 人乳腺癌MCF-7细胞凋亡的实验研究[J]. 南京中医药大学学报, 2014, 30(3): 267-271. http://xb.njucm.edu.cn/article/id/zr201403018

    LIU M, ZHANG YH, YAN XJ, et al. Study on apoptosis mechanism of ER(+) human breast cancer MCF-7 cells induced by compound components of Shanchanteng[J]. J Nanjing Univ Tradit Chin Med, 2014, 30(3): 267-271. http://xb.njucm.edu.cn/article/id/zr201403018
    [13]
    刘敏, 刘春亮, 梁国强, 等. 追毒方逆转三阴性乳腺癌MDA-MB-231细胞耐药的作用机制[J]. 南京中医药大学学报, 2019, 35(1): 63-67. http://xb.njucm.edu.cn/article/id/zr20190115

    LIU M, LIU CL, LIANG GQ, et al. Reverse effect and mechanism of effective components of Zhuidu Fang on triple negative breast cancer MDA-MB-231 drug-resistant cells[J]. J Nanjing Univ Tradit Chin Med, 2019, 35(1): 63-67. http://xb.njucm.edu.cn/article/id/zr20190115
    [14]
    QIU H, XU X, LIU M, et al. RNA interference-mediated silencing of ppGalNAc-T1 and ppGalNAc-T2 inhibits invasion and increases chemosensitivity potentially by reducing terminal α2, 3 sialylation and MMP14 expression in triple-negative breast cancer cells[J]. Mol Med Rep, 2017, 15(6): 3724-3734. doi: 10.3892/mmr.2017.6449
    [15]
    LIU CL, QIU H, YU MY, et al. C-Jun-mediated β-1, 3-N-acetylglucosaminyltransferase 8 expression: A novel mechanism regulating the invasion and metastasis of colorectal carcinoma cells[J]. Oncol Lett, 2017, 14(3): 3722-3728. doi: 10.3892/ol.2017.6624
    [16]
    杨慧芬, 毛娟娟. 二至丸合桂枝汤对三阴性乳腺癌细胞系顺铂耐药性的调控作用[J]. 中国医药导报, 2021, 18(25): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202125005.htm

    YANG HF, MAO JJ. Regulating effect of Erzhi Pills and Guizhi Decoction on Cisplatin resistance in triple negative breast cancer cell lines[J]. China Med Her, 2021, 18(25): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-YYCY202125005.htm
    [17]
    李红昌, 刘维燕, 王建法, 等. 复方斑蝥通过miR-520d/Beclin1信号轴逆转三阴乳腺癌化疗耐药的机制研究[J]. 世界科学技术—中医药现代化, 2020, 22(4): 970-977. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX202004011.htm

    LI HC, LIU WY, WANG JF, et al. Compound Cantharis reverses chemotherapy resistance of TNBC via miR-520d/Beclin1 signal axis[J]. Mod Tradit Chin Med Mater Med World Sci Technol, 2020, 22(4): 970-977. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX202004011.htm
    [18]
    王中华. 雷公藤甲素对肺癌A549/DDP细胞多药耐药的逆转作用及机制[J]. 中国现代应用药学, 2014, 31(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYD201401007.htm

    WANG ZH. Effects and mechanisms of triptolide on reverse the multi-drug resistance of A549/DDP lung cancer[J]. Chin J Mod Appl Pharm, 2014, 31(1): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYD201401007.htm
    [19]
    郭琼, 南小新, 张欢, 等. 雷公藤内酯醇对DU145/ADM细胞阿霉素化疗敏感性及逆转耐药的影响[J]. 中南药学, 2013, 11(2): 81-84.

    GUO Q, NAN XX, ZHANG H, et al. Effect of triptolide on sensitivity of DU145/ADM cell line to adriamycin and reversal of drug resistance[J]. Central South Pharm, 2013, 11(2): 81-84.
    [20]
    王晓波, 支文兰, 赵福来, 等. 中药有效单体逆转骨肉瘤细胞化疗耐药研究现状[J]. 中华中医药杂志, 2022, 37(7): 3986-3991. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202207072.htm

    WANG XB, ZHI WL, ZHAO FL, et al. Research status of effective monomer of traditional Chinese medicine reversing chemotherapy resistance of osteosarcoma cells[J]. China J Tradit Chin Med Pharm, 2022, 37(7): 3986-3991. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202207072.htm
    [21]
    陆运松, 寇玉彬, 张龙龙, 等. 华蟾素对乳腺癌MDA-MB-231、MCF-7细胞增殖及p-PTEN表达的影响[J]. 国际中医中药杂志, 2019, 41(12): 1338-1342. doi: 10.3760/cma.j.issn.1673-4246.2019.12.013

    LU YS, KOU YB, ZHANG LL, et al. Effects of cinobufacin on proliferation and expression of p-PTEN in breast cancer MDA-MB-231 and MCF-7 cells[J]. Int J Tradit Chin Med, 2019, 41(12): 1338-1342. doi: 10.3760/cma.j.issn.1673-4246.2019.12.013
    [22]
    张诚, 万鼎铭, 曹伟杰. 华蟾素对Raji/ADR细胞多药耐药的逆转作用及机制[J]. 中国实验血液学杂志, 2014, 22(5): 1306-1310.

    ZHANG C, WAN DM, CAO WJ. Reversal effect of cinobufacini on multidrug resistance of raji/ADR cells and its mechanisms[J]. J Exp Hematol, 2014, 22(5): 1306-1310.
    [23]
    董正远, 许河南, 王文锐, 等. 紫杉醇长循环纳米胶束联合vMIP-ⅡN端肽逆转乳腺癌细胞耐药的研究[J]. 蚌埠医学院学报, 2020, 45(9): 1141-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-BANG202009002.htm

    DONG ZY, XU HN, WANG WR, et al. Study on the paclitaxel long-circulating nanomicelles combined with NT21MP to reverse drug resistance in breast cancer MCF-7/PR cells[J]. J Bengbu Med Coll, 2020, 45(9): 1141-1146. https://www.cnki.com.cn/Article/CJFDTOTAL-BANG202009002.htm
    [24]
    REMMERS N, ANDERSON JM, LINDE EM, et al. Aberrant expression of mucin core proteins and o-linked glycans associated with progression of pancreatic cancer[J]. Clin Cancer Res, 2013, 19(8): 1981-1993. doi: 10.1158/1078-0432.CCR-12-2662
    [25]
    HEBERT DN, LAMRIBEN L, POWERS ET, et al. The intrinsic and extrinsic effects of N-linked glycans on glycoproteostasis[J]. Nat Chem Biol, 2014, 10(11): 902-910. doi: 10.1038/nchembio.1651
    [26]
    杨淑凤, 邓国英, 刘欣, 等. 真核生物蛋白质O-甘露糖基化的研究进展[J]. 生命的化学, 2015, 35(1): 5-8. doi: 10.13488/j.smhx.20150102

    YANG SF, DENG GY, LIU X, et al. Protein O-mannosylation in eukaryotes[J]. Chem Life, 2015, 35(1): 5-8. doi: 10.13488/j.smhx.20150102
    [27]
    ZHANG ZH, ZHAO YF, JIANG LL, et al. Glycomic alterations are associated with multidrug resistance in human leukemia[J]. Int J Biochem Cell Biol, 2012, 44(8): 1244-1253. doi: 10.1016/j.biocel.2012.04.026
    [28]
    HAMAGUCHI J, NAKAGAWA H, TAKAHASHI M, et al. Swainsonine reduces 5-fluorouracil tolerance in the multistage resistance of colorectal cancer cell lines[J]. Mol Cancer, 2007, 6: 58. doi: 10.1186/1476-4598-6-58
    [29]
    ISHIDA H, TOGAYACHI A, SAKAI T, et al. A novel β1, 3-N-acetylglucosaminyltransferase (β3Gn-T8), which synthesizes poly-N-acetyllactosamine, is dramatically upregulated in colon cancer[J]. FEBS Lett, 2005, 579(1): 71-78. doi: 10.1016/j.febslet.2004.11.037
    [30]
    HUANG CQ, ZHOU JL, WU SL, et al. Cloning and tissue distribution of the human B3GALT7 gene, a member of the beta1, 3-Glycosyltransferase family[J]. Glycoconj J, 2004, 21(5): 267-273. doi: 10.1023/B:GLYC.0000045098.78968.4c
    [31]
    袁雅琴, 吴士良. β3GnT8催化多聚乳糖胺链对白血病细胞K562/乳腺癌细胞MCF-7耐药机制的相关研究[D]. 苏州: 苏州大学, 2016.

    YUAN YQ, WU SL. Study on the mechanism of polylactamine chain catalyzed by β3GnT8 for drug resistance of leukemia cell K562/breast cancer cell MCF-7[D]. Suzhou: Suzhou University, 2016.
    [32]
    HERBOMEL GG, ROJAS RE, TRAN DT, et al. The GalNAc-T Activation Pathway (GALA) is not a general mechanism for regulating mucin-type O-glycosylation[J]. PLoS One, 2017, 12(7): e0179241. doi: 10.1371/journal.pone.0179241
    [33]
    徐徐, 吴士良. 糖基转移酶ppGalNAc-T1和-T2对三阴性乳腺癌浸润、转移及药物敏感性的影响[D]. 苏州: 苏州大学, 2015.

    XU X, WU SL. Effect of glycosyltransferase ppGalNAc-T1 and - T2 on invasion, metastasis and drug sensitivity of triple negative breast cancer[D]. Suzhou: Suzhou University, 2015.
    [34]
    MOFFETT S, SHIAO TC, MOUSAVIFAR L, et al. Aberrant glycosylation patterns on cancer cells: Therapeutic opportunities for glycodendrimers/metallodendrimers oncology[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2021, 13(1): e1659.
    [35]
    王重植, 易文君. PTPRZ1通过调控PI3K/Akt通路促进乳腺癌细胞增殖和多西他赛耐药[J]. 现代肿瘤医学, 2020, 28(24): 4227-4231. https://www.cnki.com.cn/Article/CJFDTOTAL-SXZL202024004.htm

    WANG ZZ, YI WJ. PTPRZ1 promotes breast cancer cell proliferation and docetaxel-resistance by regulating the PI3K/Akt pathway[J]. J Mod Oncol, 2020, 28(24): 4227-4231. https://www.cnki.com.cn/Article/CJFDTOTAL-SXZL202024004.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views (203) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return