Volume 39 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
RONG Wen-qing, CHAI Ni, ZHU Hui-rong. Research Status and Thinking of Exosomal lncRNAs Affecting the Occurrence and Development of Colorectal Cancer with Integrated Traditional Chinese and Western Medicine[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(2): 194-200. doi: 10.14148/j.issn.1672-0482.2023.0194
Citation: RONG Wen-qing, CHAI Ni, ZHU Hui-rong. Research Status and Thinking of Exosomal lncRNAs Affecting the Occurrence and Development of Colorectal Cancer with Integrated Traditional Chinese and Western Medicine[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(2): 194-200. doi: 10.14148/j.issn.1672-0482.2023.0194

Research Status and Thinking of Exosomal lncRNAs Affecting the Occurrence and Development of Colorectal Cancer with Integrated Traditional Chinese and Western Medicine

doi: 10.14148/j.issn.1672-0482.2023.0194
  • Received Date: 2022-07-18
    Available Online: 2023-02-17
  • Exosomal lncRNAs play an important role in the occurrence and development of colorectal cancer, and can affect the process of colorectal cancer by inducing immune escape, driving epithelial-mesenchymal transition, increasing resistance to chemotherapy and targeted therapy, and promoting angiogenesis. Ancient and modern doctors believe that the basic pathogenesis of colorectal cancer is based on the deficiency of the standard of the real, the original deficiency is the deficiency of righteous qi, and the standard of the real is caused by the interaction of pathological factors such as phlegm, dampness, heat, toxin, and blood stasis. The occurrence and development of rectal cancer are highly consistent with the understanding of the pathogenesis of colorectal cancer in traditional Chinese medicine. This article combs the mechanism of exosomal lncRNAs in the occurrence and development of colorectal cancer in recent years and the research of traditional Chinese medicine intervention, and provides ideas for future research on the prevention and treatment of colorectal cancer with integrated traditional Chinese and western medicine.

     

  • loading
  • [1]
    SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
    [2]
    MA YL, YANG YZ, WANG F, et al. Long non-coding RNA CCAL regulates colorectal cancer progression by activating Wnt/β-catenin signalling pathway via suppression of activator protein 2α[J]. Gut, 2016, 65(9): 1494-1504. doi: 10.1136/gutjnl-2014-308392
    [3]
    NG CT, AZWAR S, YIP WK, et al. Isolation and identification of long non-coding RNAs in exosomes derived from the serum of colorectal carcinoma patients[J]. Biology, 2021, 10(9): 918. doi: 10.3390/biology10090918
    [4]
    YU M, SONG XG, ZHAO YJ, et al. Circulating serum exosomal long non-coding RNAs FOXD2-AS1, NRIR, and XLOC009459 as diagnostic biomarkers for colorectal cancer[J]. Front Oncol, 2021, 11: 618967. doi: 10.3389/fonc.2021.618967
    [5]
    ZHANG YL, LIU H, LIU XF, et al. Identification of an exosomal long non-coding RNAs panel for predicting recurrence risk in patients with colorectal cancer[J]. Aging, 2020, 12(7): 6067-6088. doi: 10.18632/aging.103006
    [6]
    WANG LL, DUAN WL, YAN SZ, et al. Circulating long non-coding RNA colon cancer-associated transcript 2 protected by exosome as a potential biomarker for colorectal cancer[J]. Biomed Pharmacother, 2019, 113: 108758. doi: 10.1016/j.biopha.2019.108758
    [7]
    HU DZ, ZHAN Y, ZHU KG, et al. Plasma exosomal long non-coding RNAs serve as biomarkers for early detection of colorectal cancer[J]. Cell Physiol Biochem, 2018, 51(6): 2704-2715. doi: 10.1159/000495961
    [8]
    HUANG YW, LUO YB, OU WT, et al. Exosomal lncRNA SNHG10 derived from colorectal cancer cells suppresses natural killer cell cytotoxicity by upregulating INHBC[J]. Cancer Cell Int, 2021, 21(1): 528. doi: 10.1186/s12935-021-02221-2
    [9]
    XIAN D, NIU LB, ZENG J, et al. LncRNA KCNQ1OT1 secreted by tumor cell-derived exosomes mediates immune escape in colorectal cancer by regulating PD-L1 ubiquitination via miR-30a-5p/USP22[J]. Front Cell Dev Biol, 2021, 9: 653808. doi: 10.3389/fcell.2021.653808
    [10]
    SUN JF, JIA HW, BAO XQ, et al. Tumor exosome promotes Th17 cell differentiation by transmitting the lncRNA CRNDE-h in colorectal cancer[J]. Cell Death Dis, 2021, 12(1): 123. doi: 10.1038/s41419-020-03376-y
    [11]
    LIANG ZX, LIU HS, WANG FW, et al. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization[J]. Cell Death Dis, 2019, 10(11): 829. doi: 10.1038/s41419-019-2077-0
    [12]
    XU JC, XIAO Y, LIU B, et al. Exosomal MALAT1 sponges miR-26a/26b to promote the invasion and metastasis of colorectal cancer via FUT4 enhanced fucosylation and PI3K/Akt pathway[J]. J Exp Clin Cancer Res, 2020, 39(1): 54. doi: 10.1186/s13046-020-01562-6
    [13]
    LUAN YP, LI X, LUAN YQ, et al. Circulating lncRNA UCA1 promotes malignancy of colorectal cancer via the miR-143/MYO6 axis[J]. Mol Ther Nucleic Acids, 2020, 19: 790-803. doi: 10.1016/j.omtn.2019.12.009
    [14]
    LIU L, MENG T, YANG XH, et al. Prognostic and predictive value of long non-coding RNA GAS5 and mircoRNA-221 in colorectal cancer and their effects on colorectal cancer cell proliferation, migration and invasion[J]. Cancer Biomark, 2018, 22(2): 283-299. doi: 10.3233/CBM-171011
    [15]
    LI N, LI J, MI Q, et al. Long non-coding RNA ADAMTS9-AS1 suppresses colorectal cancer by inhibiting the Wnt/β-catenin signalling pathway and is a potential diagnostic biomarker[J]. J Cell Mol Med, 2020, 24(19): 11318-11329. doi: 10.1111/jcmm.15713
    [16]
    YIN H, HU JJ, YE ZY, et al. Serum long non-coding RNA NNT-AS1 protected by exosome is a potential biomarker and functions as an oncogene via the miR-496/RAP2C axis in colorectal cancer[J]. Mol Med Rep, 2021, 24(2): 585. doi: 10.3892/mmr.2021.12224
    [17]
    CHEN XJ, LIU YQ, ZHANG QL, et al. Exosomal long non-coding RNA HOTTIP increases resistance of colorectal cancer cells to mitomycin via impairing miR-214-mediated degradation of KPNA3[J]. Front Cell Dev Biol, 2020, 8: 582723.
    [18]
    SUN FF, LIANG WW, QIAN J. The identification of CRNDE, H19, UCA1 and HOTAIR as the key lncRNAs involved in oxaliplatin or irinotecan resistance in the chemotherapy of colorectal cancer based on integrative bioinformatics analysis[J]. Mol Med Rep, 2019, 20(4): 3583-3596.
    [19]
    DENG X, RUAN HY, ZHANG XJ, et al. Long noncoding RNA CCAL transferred from fibroblasts by exosomes promotes chemoresistance of colorectal cancer cells[J]. Int J Cancer, 2020, 146(6): 1700-1716. doi: 10.1002/ijc.32608
    [20]
    REN J, DING L, ZHANG DY, et al. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19[J]. Theranostics, 2018, 8(14): 3932-3948. doi: 10.7150/thno.25541
    [21]
    YANG YN, ZHANG R, DU JW, et al. Predictive role of UCA1-containing exosomes in cetuximab-resistant colorectal cancer[J]. Cancer Cell Int, 2018, 18: 164. doi: 10.1186/s12935-018-0660-6
    [22]
    WANG FW, CAO CH, HAN K, et al. APC-activated long noncoding RNA inhibits colorectal carcinoma pathogenesis through reduction of exosome production[J]. J Clin Invest, 2019, 129(2): 727-743. doi: 10.1172/JCI122478
    [23]
    THIERY JP, ACLOQUE H, HUANG RYJ, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5): 871-890. doi: 10.1016/j.cell.2009.11.007
    [24]
    ZHANG N, NG AS, CAI SJ, et al. Novel therapeutic strategies: Targeting epithelial-mesenchymal transition in colorectal cancer[J]. Lancet Oncol, 2021, 22(8): e358-e368. doi: 10.1016/S1470-2045(21)00343-0
    [25]
    ZHOU L, LI J, TANG YP, et al. Exosomal LncRNA LINC00659 transferred from cancer-associated fibroblasts promotes colorectal cancer cell progression via miR-342-3p/ANXA2 axis[J]. J Transl Med, 2021, 19(1): 8. doi: 10.1186/s12967-020-02648-7
    [26]
    ZHAO YH, DU TT, DU LT, et al. Long noncoding RNA LINC02418 regulates MELK expression by acting as a ceRNA and may serve as a diagnostic marker for colorectal cancer[J]. Cell Death Dis, 2019, 10(8): 568. doi: 10.1038/s41419-019-1804-x
    [27]
    BARBAGALLO C, BREX D, CAPONNETTO A, et al. LncRNA UCA1, upregulated in CRC biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions[J]. Mol Ther Nucleic Acids, 2018, 12: 229-241. doi: 10.1016/j.omtn.2018.05.009
    [28]
    OEHME F, KRAHL S, GYORFFY B, et al. Low level of exosomal long non-coding RNA HOTTIP is a prognostic biomarker in colorectal cancer[J]. RNA Biol, 2019, 16(10): 1339-1345. doi: 10.1080/15476286.2019.1637697
    [29]
    CHEN CH, YAO XQ, XU YH, et al. Dahuang Zhechong Pill suppresses colorectal cancer liver metastasis via ameliorating exosomal CCL2 primed pre-metastatic niche[J]. J Ethnopharmacol, 2019, 238: 111878. doi: 10.1016/j.jep.2019.111878
    [30]
    YU H, XIE YY, ZHOU ZD, et al. Curcumin regulates the progression of colorectal cancer via LncRNA NBR2/AMPK pathway[J]. Technol Cancer Res Treat, 2019, 18: 1533033819870781. http://www.socolar.com/Article/Index?aid=200253269516&jid=200000079509
    [31]
    CHEN T, YANG P, WANG H, et al. Silence of long noncoding RNA PANDAR switches low-dose curcumin-induced senescence to apoptosis in colorectal cancer cells[J]. Onco Targets Ther, 2017, 10: 483-491. doi: 10.2147/OTT.S127547
    [32]
    ZHENG ZH, YOU HY, FENG YJ, et al. LncRNA KCNQ1OT1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cells[J]. Mol Cell Biochem, 2021, 476(7): 2575-2585. doi: 10.1007/s11010-020-03856-x
    [33]
    LI JL, QI YX. Ginsenoside Rg3 inhibits cell growth, migration and invasion in Caco-2 cells by downregulation of lncRNA CCAT1[J]. Exp Mol Pathol, 2019, 106: 131-138. doi: 10.1016/j.yexmp.2019.01.003
    [34]
    CHEN XY, WU YJ, GU JZ, et al. Anti-invasive effect and pharmacological mechanism of genistein against colorectal cancer[J]. Biofactors, 2020, 46(4): 620-628. doi: 10.1002/biof.1627
    [35]
    SONG C, PAN B, YANG X, et al. Polyphyllin VⅡ suppresses cell proliferation, the cell cycle and cell migration in colorectal cancer[J]. Oncol Lett, 2021, 21(1): 25.
    [36]
    YUAN S, YU DZ. Mechanism of ampelopsin inhibiting proliferation, remove and incursion of colorectal cancer through regulating the expression of LncRNA ZFPM2-AS1/miR-515-5p[J]. J Biomater Tissue Eng, 2021, 11(6): 1029-1036. doi: 10.1166/jbt.2021.2406
    [37]
    DAI W, MU LY, CUI YL, et al. Berberine promotes apoptosis of colorectal cancer via regulation of the long non-coding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2)/AU-binding factor 1 (AUF1)/B-cell CLL/lymphoma 2 (bcl-2) axis[J]. Med Sci Monit, 2019, 25: 730-738. doi: 10.12659/MSM.912082
    [38]
    CHANG LQ, LIU TT, CHAI ZQ, et al. lincRNA-p21 mediates the anti-cancer effect of Ginkgo biloba extract EGb 761 by stabilizing E-cadherin protein in colon cancer[J]. Med Sci Monit, 2018, 24: 9488-9496. doi: 10.12659/MSM.911924
    [39]
    XU CH, LIU T, LIU HY, et al. Panax notoginseng saponins radiosensitize colorectal cancer cells by regulating the SNHG6/miR-137 axis[J]. RSC Adv, 2019, 9(66): 38558-38567. doi: 10.1039/C9RA07622K
    [40]
    罗吉, 罗燕, 李勇敏, 等. 健脾消癌方对结肠癌TGF-β/lncRNA-ATB/miR-200a信号通路的影响[J]. 中国实验方剂学杂志, 2018, 24(6): 161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201806028.htm

    LUO J, LUO Y, LI YM, et al. Effect of Jianpi xiaoai prescription on TGF-β/lncRNA-ATB/miR-200a signal pathway in colorectal cancer[J]. Chin J Exp Tradit Med Formulae, 2018, 24(6): 161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201806028.htm
    [41]
    焦蕉, 唐麒, 蒋益兰, 等. 健脾消癌方通过lncRNA HOTAIR/JAK2/STAT3信号通路抑制结肠癌细胞株HCT116转移的机制[J]. 中国实验方剂学杂志, 2021, 27(23): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202123010.htm

    JIAO J, TANG Q, JIANG YL, et al. Efficacy of Jianpi xiaoai prescription in inhibition of metastasis of colon cancer HCT116Cells: An exploration based on LncRNA HOTAIR/JAK2/STAT3 signaling pathway[J]. Chin J Exp Tradit Med Formulae, 2021, 27(23): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202123010.htm
    [42]
    ZHANG L, LIU JX, LIN S, et al. Qingjie fuzheng granule inhibited the migration and invasion of colorectal cancer cells by regulating the lncRNA ANRIL/let-7a/TGF-β 1/smad axis[J]. Evid Based Complement Alternat Med, 2020, 2020: 5264651.
    [43]
    LU XY, WU XL, JING L, et al. Network pharmacology analysis and experiments validation of the inhibitory effect of JianPi fu recipe on colorectal cancer LoVo cells metastasis and growth[J]. Evid Based Complementary Altern Med, 2020, 2020: 4517483.
    [45]
    李维忠, 程海波. 基于癌毒病机理论的结直肠腺瘤分期辨治[J]. 中华中医药杂志, 2021, 36(6): 3373-3376. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202106069.htm

    LI WZ, CHENG HB. Differentiation and treatment of colorectal adenoma by stages based on the theory of cancer toxin pathogenesis[J]. China J Tradit Chin Med Pharm, 2021, 36(6): 3373-3376. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202106069.htm
    [46]
    王俊壹, 程海波, 周仲瑛. 结直肠癌前病变的中医理论探析[J]. 中医杂志, 2018, 59(21): 1819-1823. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ201821006.htm

    WANG JY, CHENG HB, ZHOU ZY. Traditional Chinese medicine theory analysis of precancerous lesions of colorectal cancer[J]. J Tradit Chin Med, 2018, 59(21): 1819-1823. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ201821006.htm
    [47]
    宁博彪, 刘佳佳, 刘泽静, 等. 王晞星治疗大肠癌临证经验[J]. 中华中医药杂志, 2020, 35(11): 5579-5581. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202011063.htm

    NING BB, LIU JJ, LIU ZJ, et al. WANG Xi-Xing's clinical experience in treating colorectal cancer[J]. China J Tradit Chin Med Pharm, 2020, 35(11): 5579-5581. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202011063.htm
    [48]
    张钦畅, 程海波. 基于转移前微环境探讨结直肠癌核心病机生物学基础[J]. 中华中医药杂志, 2021, 36(8): 4519-4522. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202108026.htm

    ZHANG QC, CHENG HB. Discussion on the biological basis of the core pathogenesis of colorectal cancer based on pre-metastasis niches[J]. China J Tradit Chin Med Pharm, 2021, 36(8): 4519-4522. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202108026.htm
    [49]
    唐振豪, 兰聪颖, 林丽珠. 从肿瘤免疫编辑假说探讨肿瘤"正虚邪实"及其治疗[J]. 中医杂志, 2019, 60(13): 1113-1117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ201913008.htm

    TANG ZH, LAN CY, LIN LZ. On "deficient vital qi and excess pathogenic qi" of cancer and its treatment based on cancer immunoediting hypothesis[J]. J Tradit Chin Med, 2019, 60(13): 1113-1117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ201913008.htm
    [50]
    陶智怡, 王金平, 陆烨, 等. 益气温阳方联合化疗对结直肠癌晚期患者外周血Treg细胞影响研究[J]. 中外医疗, 2019, 38(12): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HZZZ201912001.htm

    TAO ZY, WANG JP, LU Y, et al. Effect of Yiqi Wenyang Decoction recipe combined with chemotherapy on treg cells in peripheral blood of patients with advanced colorectal cancer[J]. China Foreign Med Treat, 2019, 38(12): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HZZZ201912001.htm
    [51]
    冯媛媛, 周利红, 李琦. 健脾法治疗大肠癌的进展及研究现状[J]. 中华中医药杂志, 2015, 30(11): 4013-4015. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY201511062.htm

    FENG YY, ZHOU LH, LI Q. Research status and progress of strengthening spleen therapy in treatment of colorectal cancer[J]. China J Tradit Chin Med Pharm, 2015, 30(11): 4013-4015. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY201511062.htm
    [52]
    杨彦, 杨羚. 基于"毒-虚-瘀"探讨肿瘤血管生成的中医机制[J]. 成都中医药大学学报, 2017, 40(3): 115-116. https://www.cnki.com.cn/Article/CJFDTOTAL-CDZY201703035.htm

    YANG Y, YANG L. Explore the mechanism of traditional Chinese medicine of growth of tumor angiogenesis based on theory of "cancer toxin-deficiency-stasis"[J]. J Chengdu Univ Tradit Chin Med, 2017, 40(3): 115-116. https://www.cnki.com.cn/Article/CJFDTOTAL-CDZY201703035.htm
    [53]
    王曦妤, 吴行, 石齐, 等. 从癌毒理论探讨解毒类中药在晚期结直肠癌中的应用概述[J]. 山东中医杂志, 2022, 41(2): 224-232. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZY202202019.htm

    WANG XY, WU X, SHI Q, et al. Application of detoxifying traditional Chinese medicine in advanced colorectal cancer based on theory of cancer toxin[J]. Shandong J Tradit Chin Med, 2022, 41(2): 224-232. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZY202202019.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(2)

    Article Metrics

    Article views (181) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return