Volume 38 Issue 11
Nov.  2022
Turn off MathJax
Article Contents
XUE Ya-qi, WANG Zhu-xian, LIANG Pei-yi, CHEN Hong-kai, ZHAI Dan, LIU Li, JIANG Cui-ping, SHEN Chun-yan, LIU Qiang. Advances in Molecular Pharmaceutics of Transdermal Drug Delivery Preparations of Traditional Chinese Medicine[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(11): 983-989. doi: 10.14148/j.issn.1672-0482.2022.0983
Citation: XUE Ya-qi, WANG Zhu-xian, LIANG Pei-yi, CHEN Hong-kai, ZHAI Dan, LIU Li, JIANG Cui-ping, SHEN Chun-yan, LIU Qiang. Advances in Molecular Pharmaceutics of Transdermal Drug Delivery Preparations of Traditional Chinese Medicine[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(11): 983-989. doi: 10.14148/j.issn.1672-0482.2022.0983

Advances in Molecular Pharmaceutics of Transdermal Drug Delivery Preparations of Traditional Chinese Medicine

doi: 10.14148/j.issn.1672-0482.2022.0983
  • Received Date: 2022-05-11
    Available Online: 2022-11-19
  • Molecular pharmaceutics is a discipline that studies the law and mechanism of preparations at the molecular level. It can clarify the forming principle of transdermal drug delivery and the molecular mechanism of drug release and transdermal penetration affected by the molecular interaction among drugs, matrices and organisms. In recent years, molecular pharmaceutics has been applied more and more in transdermal drug delivery. In this paper, the application of molecular pharmaceutics in transdermal drug delivery preparations of traditional Chinese medicine was reviewed, and the molecular interaction of transdermal drug delivery in preparation, drug release and skin penetration, as well as the molecular mechanism of penetration enhancer in traditional Chinese medicine promoting drug penetration into skin was investigated. It provides reference for the application of molecular pharmaceutics in the study of transdermal drug delivery preparations, so as to promote the development and wide application of transdermal drug delivery preparations of traditional Chinese medicine.

     

  • loading
  • [1]
    雷雅婷, 张也, 蔡雄, 等. 微透析技术在中药经皮给药系统中研究进展[J]. 中成药, 2021, 43(6): 1555-1559. doi: 10.3969/j.issn.1001-1528.2021.06.030

    LEI YT, ZHANG Y, CAI X, et al. Research progress of microdialysis technology in transdermal drug delivery system of traditional Chinese medicine[J]. Chin Tradit Pat Med, 2021, 43(6): 1555-1559. doi: 10.3969/j.issn.1001-1528.2021.06.030
    [2]
    马丽霞, 亓雅丽, 庄欣雅, 等. 中药外用制剂的品质传递过程与评价方法研究进展[J]. 南京中医药大学学报, 2022, 38(1): 9-17. doi: 10.14148/j.issn.1672-0482.2022.0009

    MA LX, QI YL, ZHUANG XY, et al. Research progress on quality transfer process and evaluation methods of TCM external preparations[J]. J Nanjing Univ Tradit Chin Med, 2022, 38(1): 9-17. doi: 10.14148/j.issn.1672-0482.2022.0009
    [3]
    ZAGORSKA-DZIOK M, SOBCZAK M. Hydrogel-based active substance release systems for cosmetology and dermatology application: A review[J]. Pharmaceutics, 2020, 12(5): 396. doi: 10.3390/pharmaceutics12050396
    [4]
    樊蕊. 燕麦β-葡聚糖复合凝胶制备技术及其凝胶机理研究[J]. 食品工业科技, 2019, 40(18): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201918006.htm

    FAN R. Preparation technology of β-glucan composite gel and the analysis of gelation mechanism[J]. Sci Technol Food Ind, 2019, 40(18): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201918006.htm
    [5]
    鲁金佩, 丁可盈, 郭雯雯, 等. 不同离子多糖对鱼明胶凝胶特性和结构的影响[J]. 食品与发酵工业, 2021, 47(17): 140-147. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX202117021.htm

    LU JP, DING KY, GUO WW, et al. Effects of different ionic polysaccharides on the gel and structural properties of fish gelatin[J]. Food Ferment Ind, 2021, 47(17): 140-147. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX202117021.htm
    [6]
    冯颖, 赵孟杰, 崔倩, 等. 分子模拟技术在壳聚糖功能材料开发和应用中的研究进展[J]. 化工进展, 2022, 41(8): 4241-4253. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202208023.htm

    FENG Y, ZHAO MJ, CUI Q, et al. Research progress of molecular simulation technology in the development and application of chitosan functional materials[J]. Chem Ind Eng Prog, 2022, 41(8): 4241-4253. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202208023.htm
    [7]
    ZHENG GX, XUE WW, YANG FY, et al. Revealing vilazodone's binding mechanism underlying its partial agonism to the 5-HT1A receptor in the treatment of major depressive disorder[J]. Phys Chem Chem Phys, 2017, 19(42): 28885-28896. doi: 10.1039/C7CP05688E
    [8]
    LIU C, FARAH N, WENG W, et al. Investigation of the permeation enhancer strategy on benzoylaconitine transdermal patch: The relationship between transdermal enhancement strength and physicochemical properties of permeation enhancer[J]. Eur J Pharm Sci, 2019, 138: 105009. doi: 10.1016/j.ejps.2019.105009
    [9]
    NAN LY, LIU C, LI QY, et al. Investigation of the enhancement effect of the natural transdermal permeation enhancers from Ledum palustre L. var. angustum N. Busch: Mechanistic insight based on interaction among drug, enhancers and skin[J]. Eur J Pharm Sci, 2018, 124: 105-113. doi: 10.1016/j.ejps.2018.08.025
    [10]
    李民. 粗粒化模型在蛋白质分子动力学模拟中的发展和应用[D]. 上海: 华东师范大学, 2017.

    LI M. The development and application of coarse-grained model in protein molecular dynamics simulations[D]. Shanghai: East China Normal University, 2017.
    [11]
    LUO Z, LIU C, QUAN P, et al. Mechanistic insights of the controlled release capacity of polar functional group in transdermal drug delivery system: The relationship of hydrogen bonding strength and controlled release capacity[J]. Acta Pharm Sin B, 2020, 10(5): 928-945. doi: 10.1016/j.apsb.2019.11.014
    [12]
    NOTMAN R, ANWAR J. Breaching the skin barrier—Insights from molecular simulation of model membranes[J]. Adv Drug Deliv Rev, 2013, 65(2): 237-250. doi: 10.1016/j.addr.2012.02.011
    [13]
    LIU C, QUAN P, FANG L. Effect of drug physicochemical properties on drug release and their relationship with drug skin permeation behaviors in hydroxyl pressure sensitive adhesive[J]. Eur J Pharm Sci, 2016, 93: 437-446. doi: 10.1016/j.ejps.2016.08.048
    [14]
    YANG DG, WAN XC, QUAN P, et al. The role of carboxyl group of pressure sensitive adhesive in controlled release of propranolol in transdermal patch: Quantitative determination of ionic interaction and molecular mechanism characterization[J]. Eur J Pharm Sci, 2018, 115: 330-338. doi: 10.1016/j.ejps.2018.01.038
    [15]
    LIU J, FANG L, LIU C. Investigating the influences of intermolecular interactions on viscoelastic performance of pressure-sensitive adhesive by FT-IR spectroscopy and molecular modeling[J]. Drug Dev Ind Pharm, 2020, 46(6): 1005-1014. doi: 10.1080/03639045.2020.1764026
    [16]
    ZHANG S, LIU C, YANG DG, et al. Mechanism insight on drug skin delivery from polyurethane hydrogels: Roles of molecular mobility and intermolecular interaction[J]. Eur J Pharm Sci, 2021, 161: 105783. doi: 10.1016/j.ejps.2021.105783
    [17]
    LI QY, WAN XC, LIU C, et al. Investigating the role of ion-pair strategy in regulating nicotine release from patch: Mechanistic insights based on intermolecular interaction and mobility of pressure sensitive adhesive[J]. Eur J Pharm Sci, 2018, 119: 102-111. doi: 10.1016/j.ejps.2018.04.008
    [18]
    WANG ZX, XUE YQ, ZHU ZM, et al. Quantitative structure-activity relationship of enhancers of licochalcone A and glabridin release and permeation enhancement from carbomer hydrogel[J]. Pharmaceutics, 2022, 14(2): 262. doi: 10.3390/pharmaceutics14020262
    [19]
    LIU C, QUAN P, LI SS, et al. A systemic evaluation of drug in acrylic pressure sensitive adhesive patch in vitro and in vivo: The roles of intermolecular interaction and adhesive mobility variation in drug controlled release[J]. J Control Release, 2017, 252: 83-94. doi: 10.1016/j.jconrel.2017.03.003
    [20]
    LI JJ, ZHAO JS, TAO L, et al. The effect of polymeric excipients on the physical properties and performance of amorphous dispersions: Part Ⅰ, free volume and glass transition[J]. Pharm Res, 2015, 32(2): 500-515. doi: 10.1007/s11095-014-1478-0
    [21]
    LUO Z, WAN XC, LIU C, et al. Mechanistic insights of the controlled release properties of amide adhesive and hydroxyl adhesive[J]. Eur J Pharm Sci, 2018, 119: 13-21. doi: 10.1016/j.ejps.2018.03.033
    [22]
    LUO Z, LIU C, ZHANG P, et al. Mechanistic insights of the critical role of hydrogen donor in controlling drug release from acrylate adhesive[J]. J Pharm Sci, 2020, 109(2): 1096-1104. doi: 10.1016/j.xphs.2019.10.058
    [23]
    CHAN SY, QI S, CRAIG DQM. An investigation into the influence of drug-polymer interactions on the miscibility, processability and structure of polyvinylpyrrolidone-based hot melt extrusion formulations[J]. Int J Pharm, 2015, 496(1): 95-106. doi: 10.1016/j.ijpharm.2015.09.063
    [24]
    唐伯明, 丁勇杰, 苏玥, 等. 基于自由体积理论的沥青分子模型黏度预测[J]. 科学通报, 2020, 65(30): 3308-3317. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202030010.htm

    TANG BM, DING YJ, SU Y, et al. Viscosity estimation of model asphalt based on free volume theory[J]. Chin Sci Bull, 2020, 65(30): 3308-3317. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202030010.htm
    [25]
    KISSI EO, KASTEN G, LÖBMANN K, et al. The role of glass transition temperatures in coamorphous drug-amino acid formulations[J]. Mol Pharm, 2018, 15(9): 4247-4256. doi: 10.1021/acs.molpharmaceut.8b00650
    [26]
    XIA R, CAO XZ, GAO MZ, et al. Probing sub-nano level molecular packing and correlated positron annihilation characteristics of ionic cross-linked chitosan membranes using positron annihilation spectroscopy[J]. Phys Chem Chem Phys, 2017, 19(5): 3616-3626. doi: 10.1039/C6CP07434K
    [27]
    童想柳, 杨雅丽, 林国钡, 等. 不同类型丙烯酸酯压敏胶中右旋酮洛芬的体内外释药行为研究及原因探究[J]. 中国医药工业杂志, 2019, 50(1): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHOU201901010.htm

    TONG XL, YANG YL, LIN GB, et al. Investigation on dexketoprofen release in vitro and in vivo from different kinds of acrylate pressure sensitive adhesives and cause analysis[J]. Chin J Pharm, 2019, 50(1): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHOU201901010.htm
    [28]
    WOHLRAB J, GEBERT A, NEUBERT RHH. Lipids in the skin and pH[M]//pH of the Skin: Issues and Challenges, 2018: 64-70.
    [29]
    EYERICH S, EYERICH K, TRAIDL-HOFFMANN C, et al. Cutaneous barriers and skin immunity: Differentiating a connected network[J]. Trends Immunol, 2018, 39(4): 315-327. doi: 10.1016/j.it.2018.02.004
    [30]
    ZHOU Z, LIU C, WAN XC, et al. Development of a w/o emulsion using ionic liquid strategy for transdermal delivery of anti-aging component α-lipoic acid: Mechanism of different ionic liquids on skin retention and efficacy evaluation[J]. Eur J Pharm Sci, 2020, 141: 105042. doi: 10.1016/j.ejps.2019.105042
    [31]
    GU YW, GU Q, YANG Q, et al. Finite element analysis for predicting skin pharmacokinetics of nano transdermal drug delivery system based on the multilayer geometry model[J]. Int J Nanomedicine, 2020, 15: 6007-6018. doi: 10.2147/IJN.S261386
    [32]
    DEL REGNO A, NOTMAN R. Permeation pathways through lateral domains in model membranes of skin lipids[J]. Phys Chem Chem Phys, 2018, 20(4): 2162-2174.
    [33]
    MARWAH H, GARG T, GOYAL AK, et al. Permeation enhancer strategies in transdermal drug delivery[J]. Drug Deliv, 2016, 23(2): 564-578.
    [34]
    顾琦, 朱学敏, 魏旭超, 等. 温热药性对中药挥发油透皮促渗剂皮肤毒性的影响及其机制研究[J]. 中国中药杂志, 2021, 46(2): 359-365. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202102014.htm

    GU Q, ZHU XM, WEI XC, et al. Effect of hot or warm property on skin toxicity of essential oil as penetration enhancer and its mechanism[J]. China J Chin Mater Med, 2021, 46(2): 359-365. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202102014.htm
    [35]
    王贺平, 初天哲, 李小娜, 等. 立体异构单萜醇油酸酯的制备及促透活性评价[J]. 化学通报, 2021, 84(6): 578-584, 590. https://www.cnki.com.cn/Article/CJFDTOTAL-HXTB202106009.htm

    WANG HP, CHU TZ, LI XN, et al. Syntheses and enhancing effect evaluation of the stereoisomeric monoterpene alcohol oleates[J]. Chemistry, 2021, 84(6): 578-584, 590. https://www.cnki.com.cn/Article/CJFDTOTAL-HXTB202106009.htm
    [36]
    YANG SF, WANG R, WAN G, et al. A multiscale study on the penetration enhancement mechanism of menthol to osthole[J]. J Chem Inf Model, 2016, 56(11): 2234-2242.
    [37]
    WANG ZX, XUE YQ, CHEN TT, et al. Glycyrrhiza acid micelles loaded with licochalcone A for topical delivery: Co-penetration and anti-melanogenic effect[J]. Eur J Pharm Sci, 2021, 167: 106029.
    [38]
    KIM AV, SHELEPOVA EA, EVSEENKO VI, et al. Mechanism of the enhancing effect of glycyrrhizin on nifedipine penetration through a lipid membrane[J]. J Mol Liq, 2021, 344: 117759.
    [39]
    LIU XC, LIU MY, LIU C, et al. An insight into the molecular mechanism of the temporary enhancement effect of isopulegol decanoate on the skin[J]. Int J Pharm, 2017, 529(1/2): 161-167.
    [40]
    RUAN SF, WANG ZX, XIANG SJ, et al. Mechanisms of white mustard seed (Sinapis alba L. ) volatile oils as transdermal penetration enhancers[J]. Fitoterapia, 2019, 138: 104195.
    [41]
    DAI XX, YIN QQ, WAN G, et al. Effects of concentrations on the transdermal permeation enhancing mechanisms of borneol: A coarse-grained molecular dynamics simulation on mixed-bilayer membranes[J]. Int J Mol Sci, 2016, 17(8): 1349.
    [42]
    CUI Y, LI LZ, ZHANG L, et al. Enhancement and mechanism of transdermal absorption of terpene-induced propranolol hydrochloride[J]. Arch Pharm Res, 2011, 34(9): 1477.
    [43]
    WANG R, WU Z, YANG S, et al. A molecular interpretation on the different penetration enhancement effect of borneol and menthol towards 5-fluorouracil[J]. Int J Mol Sci, 2017, 18(12): E2747.
    [44]
    LI MX, LIU C, CAI Y, et al. Transdermal enhancement strategy of lappaconitine: Alteration of keratin configuration by counter-ion[J]. AAPS Pharm Sci Tech, 2022, 23(1): 61.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (199) PDF downloads(77) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return