Volume 38 Issue 8
Aug.  2022
Turn off MathJax
Article Contents
CAI Dan-hong, ZHOU Chang-wei, ZHANG Zhao-feng, ZHAO Ye, BIAN Yao-yao, XUE Mei, LI Yu, LIU Xiao-li, ZHANG Liang. Eucommia Folium Extracts Alleviate Nonalcoholic Fatty Liver Disease in vivo and in vitro Based on the Network Pharmacology Study[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(8): 703-716. doi: 10.14148/j.issn.1672-0482.2022.0703
Citation: CAI Dan-hong, ZHOU Chang-wei, ZHANG Zhao-feng, ZHAO Ye, BIAN Yao-yao, XUE Mei, LI Yu, LIU Xiao-li, ZHANG Liang. Eucommia Folium Extracts Alleviate Nonalcoholic Fatty Liver Disease in vivo and in vitro Based on the Network Pharmacology Study[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(8): 703-716. doi: 10.14148/j.issn.1672-0482.2022.0703

Eucommia Folium Extracts Alleviate Nonalcoholic Fatty Liver Disease in vivo and in vitro Based on the Network Pharmacology Study

doi: 10.14148/j.issn.1672-0482.2022.0703
More Information
  • Corresponding author: 张良, 男, 教授, 主要从事中药药理的研究, E-mail: zhangl_1999@njucm.edu.cn
  • Received Date: 2022-01-10
    Available Online: 2022-08-05
  •   OBJECTIVE  To explore the active ingredients, targets and possible mechanism of ELE alleviating NAFLD based on the method of network pharmacology.  METHODS  The components in ELE were found in CNKI, Wanfang, TCMSP and Pubmed database. The components targets were found in TCMSP and swisstarget prediction database. NAFLD targets were found in genecard database and drugbank database. PPI network was established to analyze the interaction among targets by String 11.0 database. Compounds-targets-pathways network was established by the software of Cytoscape. Go and KEGG analysis were carried by david database. In addition the key targets were verified by cell and animals experiments.  RESULTS  The network of ELE against NAFLD contains 9 compounds and 35 targets. The targets related to lipid metabolism are PPARα and CPT-1A, and the signaling pathways mainly related to lipid metabolism are insulin resistance and AMPK signaling pathway. In vivo and in vitro experiments indicated that ELE could enhance lipid oxidation and improve NAFLD by activating AMPKα and enhancing the expression of PPARα and CPT-1A.  CONCLUSION  ELE can enhance lipid metabolism and improve NAFLD mainly related to AMPK signaling pathway.

     

  • loading
  • [1]
    LONARDO A, TARGHER G. NAFLD in the 20's. from epidemiology to pathogenesis and management of nonalcoholic fatty liver disease[J]. Curr Pharm Des, 2020, 26(10): 991-992. doi: 10.2174/138161282610200424091752
    [2]
    COLLIER J. Non-alcoholic fatty liver disease[J]. Medicine, 2007, 35(2): 86-88. doi: 10.1016/j.mpmed.2006.11.010
    [3]
    COBBINA E, AKHLAGHI F. Non-alcoholic fatty liver disease (NAFLD) — pathogenesis, classification, and effect on drug metabolizing enzymes and transporters[J]. Drug Metab Rev, 2017, 49(2): 197-211. doi: 10.1080/03602532.2017.1293683
    [4]
    PAVLIDES M, COBBOLD JFL. Non-alcoholic fatty liver disease[J]. Medicine, 2015, 43(10): 585-589. doi: 10.1016/j.mpmed.2015.07.004
    [5]
    KEI N. Multidisciplinary pharmacotherapeutic options for nonalcoholic fatty liver disease[J]. Int J Hepatol, 2012, 2012: 950693.
    [6]
    CALDWELL S. NASH Therapy: Omega 3 supplementation, vitamin E, insulin sensitizers and statin drugs[J]. Clin Mol Hepatol, 2017, 23(2): 103-108. doi: 10.3350/cmh.2017.0103
    [7]
    VERGANI L. Fatty acids and effects on in vitro and in vivo models of liver steatosis[J]. Curr Med Chem, 2019, 26(19): 3439-3456. doi: 10.2174/0929867324666170518101334
    [8]
    STEFANOVIC-RACIC M, PERDOMO G, MANTELL BS, et al. A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels[J]. Am J Physiol Endocrinol Metab, 2008, 294(5): E969-E977. doi: 10.1152/ajpendo.00497.2007
    [9]
    DUVAL C, MULLER M, KERSTEN S. PPARα and dyslipidemia[J]. Biochim Biophys Acta BBA Mol Cell Biol Lipids, 2007, 1771(8): 961-971.
    [10]
    MONTAGNER A, POLIZZI A, FOUCHE E, et al. Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD[J]. Gut, 2016, 65(7): 1202-1214. doi: 10.1136/gutjnl-2015-310798
    [11]
    JUNG YH, AGRAWAL GK, RAKWAL R, et al. Functional characterization of OsRacB GTPase — a potentially negative regulator of basal disease resistance in rice[J]. Plant Physiol Biochem, 2006, 44(1): 68-77. doi: 10.1016/j.plaphy.2005.12.001
    [12]
    LEE GH, LEE HY, PARK SA, et al. Eucommia ulmoides leaf extract ameliorates steatosis induced by high-fat diet in rats by increasing lysosomal function[J]. Nutrients, 2019, 11(2): 426. doi: 10.3390/nu11020426
    [13]
    LEE HY, LEE GH, YOON Y, et al. Rhus verniciflua and Eucommia ulmoides protects against high-fat diet-induced hepatic steatosis by enhancing anti-oxidation and AMPK activation[J]. Am J Chin Med, 2019, 47(6): 1253-1270. doi: 10.1142/S0192415X19500642
    [14]
    HAO DC, XIAO PG. Network pharmacology: A Rosetta Stone for traditional Chinese medicine[J]. Drug Dev Res, 2014, 75(5): 299-312. doi: 10.1002/ddr.21214
    [15]
    RU JL, LI P, WANG JN, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform, 2014, 6: 13. doi: 10.1186/1758-2946-6-13
    [16]
    KIM S. Getting the most out of PubChem for virtual screening[J]. Expert Opin Drug Discov, 2016, 11(9): 843-855. doi: 10.1080/17460441.2016.1216967
    [17]
    SAFRAN M, CHALIFA-CASPI V, SHMUELI O, et al. Human gene-centric databases at the Weizmann institute of science: GeneCards, UDB, CroW 21 and HORDE[J]. Nucleic Acids Res, 2003, 31(1): 142-146. doi: 10.1093/nar/gkg050
    [18]
    SZKLARCZYK D, FRANCESCHINI A, WYDER S, et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life[J]. Nucleic Acids Res, 2014, 43(D1): D447-D452.
    [19]
    HUANG DW, SHERMAN BT, TAN QN, et al. DAVID Bioinformatics Resources: Expanded annotation database and novel algorithms to better extract biology from large gene lists[J]. Nucleic Acids Res, 2007, 35(suppl_2): W169-W175. doi: 10.1093/nar/gkm415
    [20]
    LIU C, GUO FF, XIAO JP, et al. Research progress on chemical constituents and pharmacological effects of different parts of Eucommia ulmoides[J]. China J Chin Mater Med, 2020, 45(3): 497-512.
    [21]
    HAO S, XIAO Y, LIN Y, et al. Chlorogenic acid-enriched extract from Eucommia ulmoides leaves inhibits hepatic lipid accumulation through regulation of cholesterol metabolism in HepG2 cells[J]. Pharm Biol, 2016, 54(2): 251-259. doi: 10.3109/13880209.2015.1029054
    [22]
    ABDELMALEK MF, DIEHL AM. Nonalcoholic fatty liver disease as a complication of insulin resistance[J]. Med Clin N Am, 2007, 91(6): 1125-1149. doi: 10.1016/j.mcna.2007.06.001
    [23]
    HERNANDEZ-RODAS MC, VALENZUELA R, VIDELA LA. Relevant aspects of nutritional and dietary interventions in non-alcoholic fatty liver disease[J]. Int J Mol Sci, 2015, 16(10): 25168-25198. doi: 10.3390/ijms161025168
    [24]
    YU JH, XIAO ZC, ZHAO RZ, et al. Paeoniflorin suppressed IL-22 via p38 MAPK pathway and exerts anti-psoriatic effect[J]. Life Sci, 2017, 180: 17-22. doi: 10.1016/j.lfs.2017.04.019
    [25]
    HOPKINS AL. Network pharmacology: The next paradigm in drug discovery[J]. Nat Chem Biol, 2008, 4(11): 682-690. doi: 10.1038/nchembio.118
    [26]
    LAU JKC, ZHANG X, YU J. Animal models of non-alcoholic fatty liver disease: Current perspectives and recent advances[J]. J Pathol, 2017, 241(1): 36-44. doi: 10.1002/path.4829
    [27]
    WANG CH, TAO QM, WANG XH, et al. Impact of high-fat diet on liver genes expression profiles in mice model of nonalcoholic fatty liver disease[J]. Environ Toxicol Pharmacol, 2016, 45: 52-62. doi: 10.1016/j.etap.2016.05.014
    [28]
    SUN X, DUAN XP, WANG CY, et al. Protective effects of glycyrrhizic acid against non-alcoholic fatty liver disease in mice[J]. Eur J Pharmacol, 2017, 806: 75-82.
    [29]
    MI Y, TAN DH, HE Y, et al. Melatonin modulates lipid metabolism in HepG2 cells cultured in high concentrations of oleic acid: AMPK pathway activation may play an important role[J]. Cell Biochem Biophys, 2018, 76(4): 463-470.
    [30]
    FANG K, WU F, CHEN G, et al. Diosgenin ameliorates palmitic acid-induced lipid accumulation via AMPK/ACC/CPT-1A and SREBP-1c/FAS signaling pathways in LO2 cells[J]. BMC Complement Altern Med, 2019, 19(1): 255.
    [31]
    MOODY L, XU GB, CHEN H, et al. Epigenetic regulation of carnitine palmitoyltransferase 1 (Cpt1a) by high fat diet[J]. Biochim Biophys Acta BBA Gene Regul Mech, 2019, 1862(2): 141-152.
    [32]
    PAWLAK M, LEFEBVRE P, STAELS B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease[J]. J Hepatol, 2015, 62(3): 720-733.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(6)

    Article Metrics

    Article views (317) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return