Volume 38 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
FENG Yi-fan, WU Li-ping, ZHANG Yi-ying, QIAN Da-wei, DUAN Jin-ao, SONG Xiao-xiong, LYU Gao-hong, ZHU Yue, XU Hui-qin. Study on the Hypoglycemic Effect and Mechanism of Qidan Fang on Diabetic Mice[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(6): 504-510. doi: 10.14148/j.issn.1672-0482.2022.0504
Citation: FENG Yi-fan, WU Li-ping, ZHANG Yi-ying, QIAN Da-wei, DUAN Jin-ao, SONG Xiao-xiong, LYU Gao-hong, ZHU Yue, XU Hui-qin. Study on the Hypoglycemic Effect and Mechanism of Qidan Fang on Diabetic Mice[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(6): 504-510. doi: 10.14148/j.issn.1672-0482.2022.0504

Study on the Hypoglycemic Effect and Mechanism of Qidan Fang on Diabetic Mice

doi: 10.14148/j.issn.1672-0482.2022.0504
  • Received Date: 2022-01-10
    Available Online: 2022-06-07
  •   OBJECTIVE  To investigate the hypoglycemic effect of Qidan Fang on diabetic mice and explore its relevant mechanism.  METHODS  The SPF ICR mice were intraperitoneally injected with 120 mg·kg-1 alloxan after fasting for 16 h. The blood glucose was measured after fasting for 12 h after 5 d. The blood glucose of 10~25 mmol·L-1 was defined as the successful establishment of the diabetic mouse model. The male diabetic ICR mice were divided into the model group, metformin group, low-, medium- and high-dose Qidan Fang groups (0.34, 0.67, 1.34 g·kg-1·d-1, respectively), and administrated for 30 d. Additionally, normal male ICR mice were selected as the blank group. Body mass and fasting blood glucose (FBG) were recorded once every 10 d, and a glucose tolerance test (OGTT) was performed after 30 d. Serum insulin level was detected by ELISA, and then pancreas and liver tissues were collected for HE staining to observe their pathological changes. The expression levels of IRS-1, PI3K, AKT and GLUT4 in the liver tissues were determined by Western blot and qPCR.  RESULTS  Compared with the model group, the level of FBG and glucose tolerance decreased significantly (P < 0.01), and the serum insulin level increased significantly (P < 0.01), in the medium- and high-dose Qidan Fang groups; The tissue structure of the pancreas and liver was significantly improved, islet morphology recovered to a certain extent, and liver tissue abnormalities and vascular congestion were rarer in the low-, medium- and high-dose Qidan Fang groups. High dose of Qidan Fang could significantly up-regulate the protein expression levels of p-IRS-1/IRS-1, p-PI3K/PI3K, p-AKT/AKT and GLUT4 in liver tissues (P < 0.01), while significantly up-regulate the mRNA levels of IRS-1, PI3Kp85α, AKT1 and GLUT4 in liver tissues (P < 0.01).  CONCLUSION  Qidan Fang has a hypoglycemic effect on diabetic mice, and its mechanism is relative to the regulation of IRS-1/PI3K/AKT signaling pathway.

     

  • loading
  • [1]
    YONG J, JOHNSON JD, ARVAN P, et al. Therapeutic opportunities for pancreatic β-cell ER stress in diabetes mellitus[J]. Nat Rev Endocrinol, 2021, 17(8): 455-467. doi: 10.1038/s41574-021-00510-4
    [2]
    COLE JB, FLOREZ JC. Genetics of diabetes mellitus and diabetes complications[J]. Nat Rev Nephrol, 2020, 16(7): 377-390. doi: 10.1038/s41581-020-0278-5
    [3]
    DANEMAN D. Type 1 diabetes[J]. Lancet, 2006, 367(9513): 847-858. doi: 10.1016/S0140-6736(06)68341-4
    [4]
    DEFRONZO RA, HENDLER R, SIMONSON D. Insulin resistance is a prominent feature of insulin-dependent diabetes[J]. Diabetes, 1982, 31(9): 795-801. doi: 10.2337/diab.31.9.795
    [5]
    MAO YJ, ZHONG WJ. Changes of insulin resistance status and development of complications in type 1 diabetes mellitus: Analysis of DCCT/EDIC study[J]. Diabetes Res Clin Pract, 2022, 184: 109211. doi: 10.1016/j.diabres.2022.109211
    [6]
    THORN LM, FORSBLOM C, FAGERUDD J, et al. Metabolic syndrome in type 1 diabetes: Association with diabetic nephropathy and glycemic control (the FinnDiane study)[J]. Diabetes Care, 2005, 28(8): 2019-2024. doi: 10.2337/diacare.28.8.2019
    [7]
    吴挺超, 岳仁宋, 何茗苠, 等. 基于数据挖掘探讨中药复方治疗糖尿病前期的用药规律[J]. 中药药理与临床, 2021, 37(3): 190-195. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYL202103037.htm

    WU TC, YUE RS, HE MM, et al. Medication rule analysis of traditional Chinese medicine formulas in the treatment of prediabetes based on data mining[J]. Pharmacol Clin Chin Mater Med, 2021, 37(3): 190-195. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYL202103037.htm
    [8]
    胡馨予, 卢文倩, 孙晓琪, 等. 宁夏枸杞水提物对四氧嘧啶诱导糖尿病小鼠的降糖作用[J]. 食品与生物技术学报, 2019, 38(3): 91-96. doi: 10.3969/j.issn.1673-1689.2019.03.013

    HU XY, LU WQ, SUN XQ, et al. Studies on the hypoglycemic activity of Lycium barbarum L. water extracts[J]. J Food Sci Biotechnol, 2019, 38(3): 91-96. doi: 10.3969/j.issn.1673-1689.2019.03.013
    [9]
    王语聪, 谢智鑫, 张学艳, 等. 黄芪对2型糖尿病大鼠碱性磷酸酶与炎症反应的影响[J]. 食品工业科技, 2021, 42(13): 351-357. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ202113049.htm

    WANG YC, XIE ZX, ZHANG XY, et al. Effect of Astragalus on intestinal alkaline phosphatase and inflammatory response in type 2 diabetic rats[J]. Sci Technol Food Ind, 2021, 42(13): 351-357. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ202113049.htm
    [10]
    许继艳, 胡哲, 高燕, 等. 山茱萸提取物对糖尿病小鼠降血糖作用的研究[J]. 时珍国医国药, 2014, 25(10): 2386-2388. https://www.cnki.com.cn/Article/CJFDTOTAL-SZGY201410031.htm

    XU JY, HU Z, GAO Y, et al. Hypoglycemic effects of iridoid glycoside in Comus officinali extract on diabetic mice[J]. Lishizhen Med Mater Med Res, 2014, 25(10): 2386-2388. https://www.cnki.com.cn/Article/CJFDTOTAL-SZGY201410031.htm
    [11]
    王德萍, 鱼晓敏, 安馨, 等. 桑叶多组分协同降血糖作用[J]. 现代预防医学, 2018, 45(16): 2924-2928. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201816011.htm

    WANG DP, YU XM, AN X, et al. Synergistic hypoglycemic effects of mulberry leaves multi-components on diabetic mice[J]. Mod Prev Med, 2018, 45(16): 2924-2928. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYF201816011.htm
    [12]
    张海伶, 马骁. 白花丹参对糖尿病大鼠胰岛B细胞凋亡的影响[J]. 四川大学学报(自然科学版), 2017, 54(6): 1341-1344. doi: 10.3969/j.issn.0490-6756.2017.06.034

    ZHANG HL, MA X. Inhibitory effects of Salvia miltiorrhiza bge. f. alba water extract on apoptosis of islet B cells in rats[J]. J Sichuan Univ Nat Sci Ed, 2017, 54(6): 1341-1344. doi: 10.3969/j.issn.0490-6756.2017.06.034
    [13]
    CIGNARELLI A, GENCHI V, PERRINI S, et al. Insulin and insulin receptors in adipose tissue development[J]. Int J Mol Sci, 2019, 20(3): 759. doi: 10.3390/ijms20030759
    [14]
    YANG JY, ZHANG TT, DONG Z, et al. Dietary supplementation with exogenous sea-cucumber-derived ceramides and glucosylceramides alleviates insulin resistance in high-fructose-diet-fed rats by upregulating the IRS/PI3K/Akt signaling pathway[J]. J Agric Food Chem, 2021, 69(32): 9178-9187. doi: 10.1021/acs.jafc.0c06831
    [15]
    EJAZ A, MARTINEZ-GUINO L, GOLDFINE AB, et al. Dietary betaine supplementation increases Fgf21 levels to improve glucose homeostasis and reduce hepatic lipid accumulation in mice[J]. Diabetes, 2016, 65(4): 902-912. doi: 10.2337/db15-1094
    [16]
    DENG LL. Astragaloside Ⅳ as potential antioxidant against diabetic ketoacidosis in juvenile mice through activating JNK/Nrf2 signaling pathway[J]. Arch Med Res, 2020, 51(7): 654-663. doi: 10.1016/j.arcmed.2020.06.013
    [17]
    HU TG, WEN P, SHEN WZ, et al. Effect of 1-deoxynojirimycin isolated from mulberry leaves on glucose metabolism and gut microbiota in a streptozotocin-induced diabetic mouse model[J]. J Nat Prod, 2019, 82(8): 2189-2200. doi: 10.1021/acs.jnatprod.9b00205
    [18]
    DZYDZAN O, BILA I, KUCHARSKA AZ, et al. Antidiabetic effects of extracts of red and yellow fruits of cornelian cherries (Cornus mas L. ) on rats with streptozotocin-induced diabetes mellitus[J]. Food Funct, 2019, 10(10): 6459-6472. doi: 10.1039/C9FO00515C
    [19]
    HUANG MQ, ZHOU CJ, ZHANG YP, et al. Salvianolic acid B ameliorates hyperglycemia and dyslipidemia in db/db mice through the AMPK pathway[J]. Cell Physiol Biochem, 2016, 40(5): 933-943. doi: 10.1159/000453151
    [20]
    黄凤玲, 邢珂慧, 谢惠, 等. 红枣色素对四氧嘧啶糖尿病小鼠的降血糖作用[J]. 食品科技, 2020, 45(7): 293-297. https://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ202007051.htm

    HUANG FL, XING KH, XIE H, et al. Hypoglycemic effect of jujube pigment on alloxan-induced diabetic mice[J]. Food Sci Technol, 2020, 45(7): 293-297. https://www.cnki.com.cn/Article/CJFDTOTAL-SSPJ202007051.htm
    [21]
    KUPRIYANOVA Y, ZAHARIA OP, BOBROV P, et al. Early changes in hepatic energy metabolism and lipid content in recent-onset type 1 and 2 diabetes mellitus[J]. J Hepatol, 2021, 74(5): 1028-1037. doi: 10.1016/j.jhep.2020.11.030
    [22]
    KAUL K, APOSTOLOPOULOU M, RODEN M. Insulin resistance in type 1 diabetes mellitus[J]. Metabolism, 2015, 64(12): 1629-1639. doi: 10.1016/j.metabol.2015.09.002
    [23]
    BHATTAMISRA SK, KOH HM, LIM SY, et al. Molecular and biochemical pathways of catalpol in alleviating diabetes mellitus and its complications[J]. Biomolecules, 2021, 11(2): 323. doi: 10.3390/biom11020323
    [24]
    ATKINSON MA, EISENBARTH GS, MICHELS AW. Type 1 diabetes[J]. Lancet, 2014, 383(9911): 69-82. doi: 10.1016/S0140-6736(13)60591-7
    [25]
    YU WZ, FAN LD, WANG MF, et al. Inside front cover: Pterostilbene improves insulin resistance caused by advanced glycation end products (AGEs) in hepatocytes and mice[J]. Mol Nutr Food Res, 2021, 65(15): 2170037. doi: 10.1002/mnfr.202170037
    [26]
    JAMES DE, STÖCKLI J, BIRNBAUM MJ. The aetiology and molecular landscape of insulin resistance[J]. Nat Rev Mol Cell Biol, 2021, 22(11): 751-771. doi: 10.1038/s41580-021-00390-6
    [27]
    XU H, ZHOU Y, LIU YX, et al. Metformin improves hepatic IRS2/PI3K/Akt signaling in insulin-resistant rats of NASH and cirrhosis[J]. J Endocrinol, 2016, 229(2): 133-144. doi: 10.1530/JOE-15-0409
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article Metrics

    Article views (115) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return