Volume 38 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
QIU Ya-lan, GAO Jing-dong, LIU Min, ZHANG Lei, SONG Qing. Study on the Anti-Colorectal Cancer Mechanism of Jianpi Jiedu Decoction Based on Network Pharmacology[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(2): 136-146. doi: 10.14148/j.issn.1672-0482.2022.0136
Citation: QIU Ya-lan, GAO Jing-dong, LIU Min, ZHANG Lei, SONG Qing. Study on the Anti-Colorectal Cancer Mechanism of Jianpi Jiedu Decoction Based on Network Pharmacology[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(2): 136-146. doi: 10.14148/j.issn.1672-0482.2022.0136

Study on the Anti-Colorectal Cancer Mechanism of Jianpi Jiedu Decoction Based on Network Pharmacology

doi: 10.14148/j.issn.1672-0482.2022.0136
  • Received Date: 2021-07-29
    Available Online: 2022-03-01
  •   OBJECTIVE  To explore the anti-tumor mechanism of Jianpi Jiedu Decoction (JPJDD) based on network pharmacology and molecular docking.  METHODS  TCMSP, TCMID and ETCM databases were used to predict the active ingredients and the targets of JPJDD, and GeneCards database was used to search tumor related targets and match the targets above. The common targets were imported into Cytoscape 3.7.2 to construct the PPI network and select the key targets by network topology analysis. GO enrichment analysis and KEGG pathway enrichment analysis were performed by R 3.6.3 software. Finally the Autodock 2.4 was used for molecular docking to predict the binding degree of the active ingredients to target genes. In addition, the key targets were verified by cell experiments.  RESULTS  24 kinds of active ingredients and 86 tumor related targets were identified, including the key targets of PTGS2, HSP90AA1 and PRSS1, which were obtained by PPI network topology analysis. The molecular docking showed that all of the key targets had good binding activity with quercetin and kaempferol. GO enrichment analysis and KEGG pathway enrichment analysis suggested that JPJDD may play the role of anti-tumor through PI3K/Akt signal pathway and MAPK signal pathway. The results showed that JPJDD inhibited both the protein and mRNA expressions of PTGS2 and p38MAPK, but after silencing PTGS2 gene, the expression of downstream gene p38MAPK and the effect on colorectal cancer cells metastasis had no obvious response to JPJDD.  CONCLUSION  JPJDD can inhibit the metastasis of colorectal cancer via PTGS2 mediated p38MAPK signaling pathway.

     

  • loading
  • [1]
    HOPKINS AL. Network pharmacology: The next paradigm in drug discovery[J]. Nat Chem Biol, 2008, 4(11): 682-690. doi: 10.1038/nchembio.118
    [2]
    KIBBLE M, SAARINEN N, TANG J, et al. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products[J]. Nat Prod Rep, 2015, 32(8): 1249-1266. doi: 10.1039/C5NP00005J
    [3]
    YUAN HD, MA QQ, CUI HY, et al. How can synergism of traditional medicines benefit from network pharmacology?[J]. Molecules, 2017, 22(7): 1135. doi: 10.3390/molecules22071135
    [4]
    MUHAMMAD J, KHAN A, ALI A, et al. Network pharmacology: Exploring the resources and methodologies[J]. Curr Top Med Chem, 2018, 18(12): 949-964. doi: 10.2174/1568026618666180330141351
    [5]
    RU J, LI P, WANG J, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform, 2014, 6: 13. doi: 10.1186/1758-2946-6-13
    [6]
    XUE R, FANG Z, ZHANG M, et al. TCMID: Traditional Chinese Medicine integrative database for herb molecular mechanism analysis[J]. Nucleic Acids Res, 2013, 41: D1089-D1095. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531123/pdf/gks1100.pdf
    [7]
    XU HY, ZHANG YQ, LIU ZM, et al. ETCM: an encyclopaedia of traditional Chinese medicine[J]. Nucleic Acids Res, 2019, 47(d1): D976-D982. doi: 10.1093/nar/gky987
    [8]
    WISHART DS, FEUNANG YD, GUO AC, et al. DrugBank 5.0: A major update to the DrugBank database for 2018[J]. Nucleic Acids Res, 2018, 46(d1): D1074-D1082. doi: 10.1093/nar/gkx1037
    [9]
    REBHAN M, CHALIFA-CASPI V, PRILUSKY J, et al. GeneCards: A novel functional genomics compendium with automated data mining and query reformulation support[J]. Bioinformatics, 1998, 14(8): 656-664. doi: 10.1093/bioinformatics/14.8.656
    [10]
    TIPPMANN S. Programming tools: Adventures with R[J]. Nature, 2015, 517(7532): 109-110. doi: 10.1038/517109a
    [11]
    SHANNON P, MARKIEL A, OZIER O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks[J]. Genome Res, 2003, 13(11): 2498-2504. doi: 10.1101/gr.1239303
    [12]
    MARTIN A, OCHAGAVIA ME, RABASA LC, et al. BisoGenet: A new tool for gene network building, visualization and analysis[J]. BMC Bioinformatics, 2010, 11: 91. doi: 10.1186/1471-2105-11-91
    [13]
    ZEILEIS A, HORNIK K, MURRELL P. Escaping RGBland: Selecting colors for statistical graphics[J]. Comput Stat Data Anal, 2009, 53(9): 3259-3270. doi: 10.1016/j.csda.2008.11.033
    [14]
    LAWRENCE M, HUBER W, PAGES H, et al. Software for computing and annotating genomic ranges[J]. PLoS Comput Biol, 2013, 9(8): e1003118. doi: 10.1371/journal.pcbi.1003118
    [15]
    WICKHAM H. ggplot2: Elegant Graphics for Data Analysis[M]. NewYork: Springer-Verlag, 2016: 8.
    [16]
    HUBER W, CAREY VJ, GENTLEMAN R, et al. Orchestrating high-throughput genomic analysis with Bioconductor[J]. Nature Methods, 2015, 12(2): 115-121. doi: 10.1038/nmeth.3252
    [17]
    BERMAN HM, WESTBROOK J, FENG Z, et al. The protein data bank[J]. Nucleic Acids Res, 2000, 28(1): 235-242. doi: 10.1093/nar/28.1.235
    [18]
    MORRIS GM, HUEY R, LINDSTROM W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility[J]. J Comput Chem, 2009, 30(16): 2785-2791. doi: 10.1002/jcc.21256
    [19]
    JASON G, PAIARDINI A. PyMod 3: A complete suite for structural bioinformatics in PyMOL[J]. Bioinformatics, 2021, 37(10): 1471-1472. doi: 10.1093/bioinformatics/btaa849
    [20]
    ALMATROODI SA, ALSAHLI MA, ALMATROUDI A, et al. Potential therapeutic targets of quercetin, a plant flavonol, and its role in the therapy of various types of cancer through the modulation of various cell signaling pathways[J]. Molecules, 2021, 26(5): 1315. doi: 10.3390/molecules26051315
    [21]
    LI QY, WEI LH, LIN S, et al. Synergistic effect of kaempferol and 5-fluorouracil on the growth of colorectal cancer cells by regulating the PI3K/Akt signaling pathway[J]. Mol Med Rep, 2019, 20(1): 728-734.
    [22]
    WANG X, YANG Y, AN Y, et al. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer[J]. Biomed Pharmacother, 2019, 117: 109086. doi: 10.1016/j.biopha.2019.109086
    [23]
    BROWN JR, DUBOIS RN. COX-2: A molecular target for colorectal cancer prevention[J]. J Clin Oncol, 2005, 23(12): 2840-2855. doi: 10.1200/JCO.2005.09.051
    [24]
    CHAN AT, OGINO S, FUCHS CS. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2[J]. N Engl J Med, 2007, 356(21): 2131-2142. doi: 10.1056/NEJMoa067208
    [25]
    CUENDA A, ROUSSEAU S. p38 MAP-kinases pathway regulation, function and role in human diseases[J]. Biochim Biophys Acta, 2007, 1773(8): 1358-1375. doi: 10.1016/j.bbamcr.2007.03.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (327) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return