Volume 38 Issue 2
Feb.  2022
Turn off MathJax
Article Contents
XU Cheng-cheng, LU Yan, TANG Li-li, LIANG Yan, ZHAO Yang. Molecular Mechanism Research of Wenshen Yanggan Decoction on Dopaminergic Neuron Injury in MPTP-Induced Parkinson's Disease[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(2): 122-128. doi: 10.14148/j.issn.1672-0482.2022.0122
Citation: XU Cheng-cheng, LU Yan, TANG Li-li, LIANG Yan, ZHAO Yang. Molecular Mechanism Research of Wenshen Yanggan Decoction on Dopaminergic Neuron Injury in MPTP-Induced Parkinson's Disease[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(2): 122-128. doi: 10.14148/j.issn.1672-0482.2022.0122

Molecular Mechanism Research of Wenshen Yanggan Decoction on Dopaminergic Neuron Injury in MPTP-Induced Parkinson's Disease

doi: 10.14148/j.issn.1672-0482.2022.0122
  • Received Date: 2021-07-07
    Available Online: 2022-03-01
  •   OBJECTIVE  To explore the potential mechanism of Wenshen Yanggan Decoction on protecting dopaminergic neurons and delaying the process of Parkinson's disease (PD).  METHODS  Fifty mice were randomly divided into 5 groups (n=10): control group, model group, Wenshen Yanggan Decoction high dose group, Wenshen Yanggan Decoction low dose group and amantadine group. Except for the control group, mice were injected intraperitoneally with 30 mg · kg-1 of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) twice a week for 4 consecutive weeks to establish a Parkinson's disease (PD) mouse model. The mice were administrated with Wenshen Yanggan Decoction by gavage once a day for 3 weeks. The behavioral effects of mice were observed. Immunohistochemistry and Nissl staining were used to detect the number of DA neurons. The contents of DA, 3, 4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in pathological tissues were measured by HPLC. Colorimetric method was used to determine the activities of ATPase and mitochondrial respiratory chain ComplexⅠ in the substantia nigra. The protein expression levels of PINK1, Parkin, VDAC1, LC3Ⅱ/Ⅰ, and P62 were detected by Western blot.  RESULTS  The behavioral tests showed that compared with the model group, Wenshen Yanggan Decoction significantly improved the muscle strength and exercise balance of mice (P < 0.01), and prolonged the duration of mice on the roller (P < 0.01). The Results of the immunohistochemistry demonstrated that a large number of TH immunoreactive cells and obvious cell protrusions were observed in Wenshen Yanggan Decoction high dose group, which was consistent with the Results of the Nissl staining assay. In addition, Wenshen Yanggan Decoction significantly increased the levels of DA and HVA (P < 0.05, P < 0.01) in the striatum. Furthermore, treatment with the high dose Wenshen Yanggan Decoction profoundly promoted the activities of ATPase and ComplexⅠ(P < 0.01), up-regulated the protein levels of PINK1 (P < 0.05), Parkin (P < 0.01) and LC3Ⅱ/Ⅰ (P < 0.01), and inhibited P62 protein expression (P < 0.01) in MPTP-induced mice.  CONCLUSION  Wenshen Yanggan Decoction can improve mitochondrial function, and provide neuroprotective effect in PD by activating PINK1/Parkin mediated mitochondrial autophagy pathway.

     

  • loading
  • [1]
    OBESO JA, STAMELOU M, GOETZ CG, et al. Past, present, and future of Parkinson's disease: A special essay on the 200th Anniversary of the Shaking Palsy[J]. Mov Disord, 2017, 32(9): 1264-1310. doi: 10.1002/mds.27115
    [2]
    DORSEY ER, SHERER T, OKUN MS, et al. The emerging evidence of the parkinson pandemic[J]. J Parkinsons Dis, 2018, 8(S1): S3-S8. doi: 10.3233/JPD-181474
    [3]
    LI G, MA JF, CUI SS, et al. Parkinson's disease in China: A forty-year growing track of bedside work[J]. Transl Neurodegener, 2019, 8: 22. doi: 10.1186/s40035-019-0162-z
    [4]
    MENZIES FM, FLEMING A, RUBINSZTEIN DC. Compromised autophagy and neurodegenerative diseases[J]. Nat Rev Neurosci, 2015, 16(6): 345-357. doi: 10.1038/nrn3961
    [5]
    BOSE A, BEAL MF. Mitochondrial dysfunction in Parkinson's disease[J]. J Neurochem, 2016, 139(14): 216-231.
    [6]
    甘雪, 刘书一, 王正波. 线粒体自噬及功能障碍与帕金森病[J]. 中国比较医学杂志, 2020, 30(10): 121-127. doi: 10.3969/j.issn.1671-7856.2020.10.018

    GAN X, LIU SY, WANG ZB. Mitochondrial autophagy and dysfunction in Parkinson's disease[J]. Chin J Comp Med, 2020, 30(10): 121-127. doi: 10.3969/j.issn.1671-7856.2020.10.018
    [7]
    王苏雷, 杨卉, 陆艳, 等. 赵杨教授治疗帕金森病失眠经验及验案举隅[J]. 四川中医, 2018, 36(7): 17-19.

    WANG SL, YANG H, LU Y, et al. Professor Zhao Yang's experience in treating insomnia of Parkinson's disease[J]. J Sichuan Tradit Chin Med, 2018, 36(7): 17-19.
    [8]
    陆艳, 张亚杰, 阮杰, 等. 肉苁蓉颗粒剂对帕金森病大鼠模型黑质纹状体多巴胺能神经元的保护作用研究[J]. 中华中医药学刊, 2016, 34(12): 2927-2931.

    LU Y, ZHANG YJ, RUAN J, et al. Nigrostriatal dopaminergic protection of Cistanche granule on rat model of Parkinson's disease[J]. Chin Arch Tradit Chin Med, 2016, 34(12): 2927-2931.
    [9]
    赵伟, 孙国志. 不同种实验动物间用药量换算[J]. 畜牧兽医科技信息, 2010(5): 52-53.

    ZHAO W, SUN GZ. Conversion of drug dosage between different experimental animals[J]. Chin J Animal Husb Vet Med, 2010(5): 52-53.
    [10]
    HU M, LI FM, WANG WD. Vitexin protects dopaminergic neurons in MPTP-induced Parkinson's disease through PI3K/Akt signaling pathway[J]. Drug Des Devel Ther, 2018, 12: 565-573. doi: 10.2147/DDDT.S156920
    [11]
    HASEGAWA K, YASUDA T, SHIRAISHI C, et al. Promotion of mitochondrial biogenesis by necdin protects neurons against mitochondrial insults[J]. Nat Commun, 2016, 7: 10943. doi: 10.1038/ncomms10943
    [12]
    GENG XC, TIAN XF, TU PF, et al. Neuroprotective effects of echinacoside in the mouse MPTP model of Parkinson's disease[J]. Eur J Pharmacol, 2007, 564(1/2/3): 66-74.
    [13]
    马浩洁. 基于PINK1基因探讨大补阴丸合牵正散对帕金森细胞模型线粒体的保护机制[D]. 北京: 北京中医药大学, 2018.

    MA HJ. The protective mechanism investigation of Dabuyin Pill combined with Qianzheng San on mitochondria in Parkinson's disease model cells based on PINK1 gene[D]. Beijing: Beijing University of Chinese Medicine, 2018.
    [14]
    蒙健林, 梁健芬, 张兴博, 等. 帕金森病实验动物模型的研究进展及评价[J]. 中国实验动物学报, 2021, 29(3): 399-404. doi: 10.3969/j.issn.1005-4847.2021.03.016

    MENG JL, LIANG JF, ZHANG XB, et al. Research progress and evaluation on animal models of Parkinson's disease[J]. Acta Lab Animalis Sci Sin, 2021, 29(3): 399-404. doi: 10.3969/j.issn.1005-4847.2021.03.016
    [15]
    CARTIER EA, PARRA LA, BAUST TB, et al. A biochemical and functional protein complex involving dopamine synthesis and transport into synaptic vesicles[J]. J Biol Chem, 2010, 285(3): 1957-1966. doi: 10.1074/jbc.M109.054510
    [16]
    李义. 帕金森氏病发病过程中多巴胺反应性氧化产物的蛋白修饰作用研究[D]. 遵义: 遵义医科大学, 2020.

    LI Y. The protein modification by reactive oxidation product of dopamine in the pathogenesis of Parkinson's disease[D]. Zunyi: Zunyi Medical College, 2020.
    [17]
    YOULE RJ, VAN DER BLIEK AM. Mitochondrial fission, fusion, and stress[J]. Science, 2012, 337(6098): 1062-1065. doi: 10.1126/science.1219855
    [18]
    MALPARTIDA AB, WILLIAMSON M, NARENDRA DP, et al. Mitochondrial dysfunction and mitophagy in Parkinson's disease: From mechanism to therapy[J]. Trends Biochem Sci, 2021, 46(4): 329-343. doi: 10.1016/j.tibs.2020.11.007
    [19]
    GEISLER S, HOLMSTRÖM KM, SKUJAT D, et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1[J]. Nat Cell Biol, 2010, 12(2): 119-131. doi: 10.1038/ncb2012
    [20]
    MA SF, ATTARWALA IY, XIE XQ. SQSTM1/p62: A potential target for neurodegenerative disease[J]. ACS Chem Neurosci, 2019, 10(5): 2094-2114. doi: 10.1021/acschemneuro.8b00516
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article Metrics

    Article views (176) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return