Volume 37 Issue 5
Sep.  2021
Turn off MathJax
Article Contents
JU Hao-yu, ZHAO Shi-hao, ZHAO Hai-yan, ZHANG Wei-peng, GAO Zhen-jiang, XIAO Hong-wei. Present Situation and Developing Trend on Drying of Chinese Herbs[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(5): 786-196. doi: 10.14148/j.issn.1672-0482.2021.0786
Citation: JU Hao-yu, ZHAO Shi-hao, ZHAO Hai-yan, ZHANG Wei-peng, GAO Zhen-jiang, XIAO Hong-wei. Present Situation and Developing Trend on Drying of Chinese Herbs[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(5): 786-196. doi: 10.14148/j.issn.1672-0482.2021.0786

Present Situation and Developing Trend on Drying of Chinese Herbs

doi: 10.14148/j.issn.1672-0482.2021.0786
  • Received Date: 2020-12-27
    Available Online: 2021-12-21
  • Publish Date: 2021-09-10
  • Drying is a key process which affects the quality and efficacy of Chinese herbal medicine. The product usage and economic value are directly influenced by the drying results. In this paper, the drying technology, drying models and the effective constituent degradation regulation of Chinese herbals were reviewed. As to drying technology, the advantages and disadvantages as well as adaptive of traditional drying methods including shading drying, sun drying and hot air drying and modernly drying methods containing air implement drying, vacuum pulsed drying, medium short-wave infrared drying, and radio-frequency drying were analyzed in detail. In drying model section, the application of theoretical model, semi-theoretical model and empirical model were illustrated. Taking alkaloids, flavonoids, polysaccharides and pigments as the representative indexes of Chinese herbal medicine, the degradation influencing factors and changing regulation were discussed. It is necessary to understand the drying characteristic of the different Chinese herbs drying technology and the degradation regulation of the medicinal component and to establish a suitable drying model, which can provide a theoretical foundation different types of Chinese herbal medicine to choose appropriate drying technology and process.

     

  • loading
  • [1]
    及华, 张海新. 我国中药材种类介绍[J]. 现代农村科技, 2018(12): 106-107. doi: 10.3969/j.issn.1674-5329.2018.12.079
    [2]
    徐晚秀, 李静, 宋飞虎, 等. 中草药干燥现状[J]. 中药与临床, 2015, 6(2): 114-118. https://www.cnki.com.cn/Article/CJFDTOTAL-LCZY201502034.htm
    [3]
    任迪峰, 毛志怀. 我国中草药干燥的现状及发展趋势[J]. 农业工程学报, 2001, 17(2): 5-8. doi: 10.3321/j.issn:1002-6819.2001.02.002
    [4]
    王海洋, 吕建民. 中草药产地初加工技术探讨[J]. 农家参谋, 2017(12): 92. https://www.cnki.com.cn/Article/CJFDTOTAL-NJCM201712087.htm
    [5]
    郑娅, 颉敏华, 张芳, 等. 干燥技术在中药材产地初加工中的应用[J]. 甘肃农业科技, 2017(3): 71-74. doi: 10.3969/j.issn.1001-1463.2017.03.022
    [6]
    张欣蕊. 中药材干燥技术现状及发展趋势[J]. 临床医药文献电子杂志, 2020, 7(34): 194. https://www.cnki.com.cn/Article/CJFDTOTAL-LCWX202034156.htm
    [7]
    王伟影, 范蕾. 不同采收时期及干燥方法对栀子中栀子苷含量的影响[J]. 中国药师, 2012, 15(6): 811-813. doi: 10.3969/j.issn.1008-049X.2012.06.022
    [8]
    巨浩羽, 赵海燕, 于贤龙, 等. 基于温湿度控制的箱式果蔬热风干燥机设计[J]. 食品与机械, 2020, 36(7): 97-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SPJX202007020.htm
    [9]
    巨浩羽, 赵士豪, 赵海燕, 等. 干燥介质相对湿度对西洋参根干燥特性和品质的影响[J]. 中草药, 2020, 51(3): 631-638. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202003012.htm
    [10]
    JU HY, ZHAO SH, MUJUMDAR AS, et al. Step-down relative humidity convective air drying strategy to enhance drying kinetics, efficiency, and quality of American ginseng root (Panax quinquefolium)[J]. Dry Technol, 2020, 38(7): 903-916. doi: 10.1080/07373937.2019.1597373
    [11]
    段素敏, 孔铭, 李秀杨, 等. 当归药材热风-微波联合干燥方法研究[J]. 中草药, 2016, 47(19): 3415-3419. doi: 10.7501/j.issn.0253-2670.2016.19.011
    [12]
    JU HY, ZHANG Q, MUJUMDAR AS, et al. Hot-air drying kinetics of yam slices under step change in relative humidity[J]. Int J Food Eng, 2016, 12(8): 783-792. doi: 10.1515/ijfe-2015-0340
    [13]
    齐娅汝, 李远辉, 韩丽, 等. 二至丸热风干燥动力学及干燥过程数学模拟研究[J]. 中草药, 2017, 48(15): 3056-3063. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO201715007.htm
    [14]
    刘勇, 徐娜, 陈骏飞, 等. 不同干燥方法对三七药材外观性状与内在结构及其品质的影响[J]. 中草药, 2019, 50(23): 5714-5723. doi: 10.7501/j.issn.0253-2670.2019.23.011
    [15]
    ZHAO DD, WEI J, HAO JX, et al. Effect of sodium carbonate solution pretreatment on drying kinetics, antioxidant capacity changes, and final quality of wolfberry (Lycium barbarum) during drying[J]. LWT, 2019, 99: 254-261. doi: 10.1016/j.lwt.2018.09.066
    [16]
    OJEDIRAN JO, OKONKWO CE, ADEYI AJ, et al. Drying characteristics of yam slices (Dioscorea rotundata) in a convective hot air dryer: Application of ANFIS in the prediction of drying kinetics[J]. Heliyon, 2020, 6(3): e03555. doi: 10.1016/j.heliyon.2020.e03555
    [17]
    陈衍男, 赵恒强, 卢丙, 等. 基于低场核磁共振技术的不同干燥过程中光皮木瓜水分迁移规律研究[J]. 中草药, 2018, 49(17): 4022-4028. doi: 10.7501/j.issn.0253-2670.2018.17.009
    [18]
    巨浩羽, 赵士豪, 赵海燕, 等. 基于weibull分布函数的枸杞真空脉动干燥过程模拟及动力学研究[J]. 中草药, 2018, 49(22): 5313-5319. doi: 10.7501/j.issn.0253-2670.2018.22.014
    [19]
    XIE L, MUJUMDAR AS, FANG XM, et al. Far-infrared radiation heating assisted pulsed vacuum drying (FIR-PVD) of wolfberry(Lycium barbarum L. ): Effects on drying kinetics and quality attributes[J]. Food Bioprod Process, 2017, 102: 320-331. doi: 10.1016/j.fbp.2017.01.012
    [20]
    吴中华, 李文丽, 赵丽娟, 等. 枸杞分段式变温热风干燥特性及干燥品质[J]. 农业工程学报, 2015, 31(11): 287-293. doi: 10.11975/j.issn.1002-6819.2015.11.041
    [21]
    DAVIDSON VJ, LI X, BROWN RB. Forced-air drying of ginseng root: 1. Effects of air temperature on quality[J]. J Food Eng, 2004, 63(4): 361-367. doi: 10.1016/j.jfoodeng.2003.08.014
    [22]
    巨浩羽, 肖红伟, 郑霞, 等. 干燥介质相对湿度对胡萝卜片热风干燥特性的影响[J]. 农业工程学报, 2015, 31(16): 296-304. doi: 10.11975/j.issn.1002-6819.2015.16.040
    [23]
    陆学中, 刘亚男, 张德榜, 等. 高湿预处理对怀山药热风干燥特性及复水性的影响[J]. 食品与机械, 2017, 33(11): 147-151, 183. https://www.cnki.com.cn/Article/CJFDTOTAL-SPJX201711036.htm
    [24]
    JU HY, EL-MASHAD HM, FANG XM, et al. Drying characteristics and modeling of yam slices under different relative humidity conditions[J]. Dry Technol, 2016, 34(3): 296-306. doi: 10.1080/07373937.2015.1052082
    [25]
    孟建升, 蒋俊春, 郑志安, 等. 3种干燥方式对山药片干燥动力学和品质的影响[J]. 中草药, 2019, 50(11): 2575-2582. doi: 10.7501/j.issn.0253-2670.2019.11.011
    [26]
    曾祥媛, 张建, 赵武奇, 等. 党参根气体射流冲击干燥特性和干燥模型[J]. 海南师范大学学报(自然科学版), 2018, 31(3): 237-249. https://www.cnki.com.cn/Article/CJFDTOTAL-HNXZ201803001.htm
    [27]
    张卫鹏, 高振江, 肖红伟, 等. 基于weibull函数不同干燥方式下的茯苓干燥特性[J]. 农业工程学报, 2015, 31(5): 317-324. doi: 10.3969/j.issn.1002-6819.2015.05.044
    [28]
    巨浩羽, 赵海燕, 张菊, 等. 基于dincer模型不同干燥方式下光皮木瓜干燥特性研究[J]. 中草药, 2020, 51(15): 3911-3921. doi: 10.7501/j.issn.0253-2670.2020.15.010
    [29]
    李文峰, 金欢欢, 肖旭霖. 山楂气体射流冲击干燥特性及干燥模型[J]. 食品科学, 2014, 35(9): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201409015.htm
    [30]
    薛珊, 赵武奇, 高贵田, 等. 苦瓜片气体射流冲击干燥特性及干燥模型[J]. 中国农业科学, 2017, 50(4): 743-754. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201704018.htm
    [31]
    娄正, 刘清, 师建芳, 等. 红枣气体射流冲击干燥收缩特性研究[J]. 农业机械学报, 2014, 45(S1): 241-246. doi: 10.6041/j.issn.1000-1298.2014.S0.039
    [32]
    代建武, 肖红伟, 谢龙, 等. 倾斜料盘式气体射流冲击干燥机设计与试验[J]. 农业机械学报, 2015, 46(7): 238-244. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201507035.htm
    [33]
    姚雪东, 肖红伟, 高振江, 等. 气流冲击式转筒干燥机设计与试验[J]. 农业机械学报, 2009, 40(10): 67-70. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200910016.htm
    [34]
    WANG J, MUJUMDAR AS, WANG H, et al. Effect of drying method and cultivar on sensory attributes, textural profiles, and volatile characteristics of grape raisins[J]. Dry Technol, 2021, 39(4): 495-506. doi: 10.1080/07373937.2019.1709199
    [35]
    巨浩羽, 赵士豪, 赵海燕, 等. 基于weibull分布函数的枸杞真空脉动干燥过程模拟及动力学研究[J]. 中草药, 2018, 49(22): 5313-5319. doi: 10.7501/j.issn.0253-2670.2018.22.014
    [36]
    曾丽华. 基于真空脉动干燥的六味地黄丸干燥过程研究[D]. 南昌: 江西中医药大学, 2019.
    [37]
    乔宏柱, 高振江, 王军, 等. 大蒜真空脉动干燥工艺参数优化[J]. 农业工程学报, 2018, 34(5): 256-263. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201805034.htm
    [38]
    WANG J, BAI TY, WANG D, et al. Pulsed vacuum drying of Chinese ginger(Zingiber officinale Roscoe)slices: Effects on drying characteristics, rehydration ratio, water holding capacity, and microstructure[J]. Dry Technol, 2019, 37(3): 301-311. doi: 10.1080/07373937.2017.1423325
    [39]
    XIE YC, GAO ZJ, LIU YH, et al. Pulsed vacuum drying of rhizoma dioscoreae slices[J]. LWT, 2017, 80: 237-249. doi: 10.1016/j.lwt.2017.02.016
    [40]
    薛令阳, 王书茂, MUJUMDAR AS, 等. 基于干燥均匀性的真空脉动干燥加热控制技术[J]. 农业机械学报, 2019, 50(4): 317-325. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201904036.htm
    [41]
    白竣文, 彭泽康, 吴学岑, 等. 中短波红外干燥白果的色泽变化预测及品质研究[J]. 食品工业科技, 2020, 41(12): 269-274, 280. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ202012044.htm
    [42]
    高鹤, 易建勇, 毕金峰, 等. 番木瓜中短波红外干燥特性[J]. 食品科学, 2015, 36(7): 30-35. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201507006.htm
    [43]
    CHEN QQ, BI JF, WU XY, et al. Drying kinetics and quality attributes of jujube (Zizyphus jujuba Miller) slices dried by hot-air and short- and medium-wave infrared radiation[J]. LWT Food Sci Technol, 2015, 64(2): 759-766. doi: 10.1016/j.lwt.2015.06.071
    [44]
    张卫鹏, 肖红伟, 高振江, 等. 中短波红外联合气体射流干燥提高茯苓品质[J]. 农业工程学报, 2015, 31(10): 269-276. doi: 10.11975/j.issn.1002-6819.2015.10.036
    [45]
    谢永康, 林雅文, 朱广飞, 等. 基于加热均匀性的射频干燥系统结构优化与试验[J]. 农业工程学报, 2018, 34(5): 248-255. https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201805033.htm
    [46]
    TIWARI G, WANG S, TANG J, et al. Analysis of radio frequency(RF)power distribution in dry food materials[J]. J Food Eng, 2011, 104(4): 548-556. doi: 10.1016/j.jfoodeng.2011.01.015
    [47]
    ERBAY Z, ICIER F. A review of thin layer drying of foods: Theory, modeling, and experimental results[J]. Crit Rev Food Sci Nutr, 2010, 50(5): 441-464. doi: 10.1080/10408390802437063
    [48]
    ERTEKIN C, FIRAT MZ. A comprehensive review of thin-layer drying models used in agricultural products[J]. Crit Rev Food Sci Nutr, 2017, 57(4): 701-717. doi: 10.1080/10408398.2014.910493
    [49]
    ONWUDE DI, HASHIM N, ABDAN K, et al. Modelling of coupled heat and mass transfer for combined infrared and hot-air drying of sweet potato[J]. J Food Eng, 2018, 228: 12-24. doi: 10.1016/j.jfoodeng.2018.02.006
    [50]
    王学成, 康超超, 伍振峰, 等. 二至丸热风干燥过程温度均匀性模拟与实验[J]. 中草药, 2020, 51(5): 1226-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202005020.htm
    [51]
    JU HY, LAW CL, FANG XM, et al. Drying kinetics and evolution of the sample's core temperature and moisture distribution of yam slices (Dioscorea alata L. ) during convective hot-air drying[J]. Dry Technol, 2016, 34(11): 1297-1306. doi: 10.1080/07373937.2015.1105814
    [52]
    KHAN MIH, WELSH Z, GU YT, et al. Modelling of simultaneous heat and mass transfer considering the spatial distribution of air velocity during intermittent microwave convective drying[J]. Int J Heat Mass Transf, 2020, 153: 119668. doi: 10.1016/j.ijheatmasstransfer.2020.119668
    [53]
    胡居吾. 蔓三七叶热泵-热风联合干燥特征与模型化研究[J]. 生物化工, 2020, 6(4): 14-17, 24. doi: 10.3969/j.issn.2096-0387.2020.04.004
    [54]
    MARABI A, LIVINGS S, JACOBSON M, et al. Normalized Weibull distribution for modeling rehydration of food particulates[J]. Eur Food Res Technol, 2003, 217(4): 311-318. doi: 10.1007/s00217-003-0719-y
    [55]
    林冰, 孙悦, 廖力, 等. 4种藤类中药材干燥模型、动力学及有效成分稳定性研究[J]. 中草药, 2018, 49(13): 3001-3008. doi: 10.7501/j.issn.0253-2670.2018.13.008
    [56]
    MIRANDA M, VEGA-GÁLVEZ A, GARCíA P, et al. Effect of temperature on structural properties of Aloe vera(Aloe barbadensis Miller)gel and Weibull distribution for modelling drying process[J]. Food Bioprod Process, 2010, 88(2/3): 138-144. http://www.researchgate.net/profile/Karina_Di_Scala/publication/240442041_Effect_of_temperature_on_structural_properties_of_Aloe_vera_(_Aloe_barbadensis_Miller)_gel_and_Weibull_distribution_for_modelling_drying_process/links/5549feda0cf2a0d4f2974611.pdf
    [57]
    TAMARIT-PINO Y, BATíAS-MONTES JM, SEGURA-PONCE LA, et al. Effect of electrohydrodynamic pretreatment on drying rate and rehydration properties of Chilean sea cucumber (Athyonidium chilensis)[J]. Food Bioprod Proc, 2020, 123: 284-295. doi: 10.1016/j.fbp.2020.07.012
    [58]
    万芳新, 李武强, 罗燕, 等. 超声预处理对枸杞远红外真空干燥特性及品质的影响[J]. 中草药, 2020, 51(18): 4654-4663. doi: 10.7501/j.issn.0253-2670.2020.18.008
    [59]
    李武强, 万芳新, 罗燕, 等. 当归切片远红外干燥特性及动力学研究[J]. 中草药, 2019, 50(18): 4320-4328. doi: 10.7501/j.issn.0253-2670.2019.18.010
    [60]
    李波, 王明伟, 强正泽, 等. 基于低温与回潮条件的当归干燥weibull函数模拟及其干燥特性研究[J]. 中草药, 2019, 50(13): 3052-3057. doi: 10.7501/j.issn.0253-2670.2019.13.009
    [61]
    张雪峰. 黄芪热风干燥机理及能效评价分析[D]. 重庆: 西南大学, 2020.
    [62]
    黄敬, 朱文学, 刘云宏, 等. 基于weibull分布函数的百合真空远红外干燥过程模拟及应用[J]. 食品与机械, 2017, 33(5): 71-76, 82. https://www.cnki.com.cn/Article/CJFDTOTAL-SPJX201705018.htm
    [63]
    卢道会, 李敏, 吴发明, 等. 中药材商品分类标准的研究[C]//第二届全国中药商品学术大会论文集. 陇西, 2010: 265-269.
    [64]
    陈亚玲, 任丽娟, 王丽, 等. 生物碱类化合物抗结核病的研究进展[J]. 中草药, 2020, 50(3): 799-805. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202003033.htm
    [65]
    钱桂敏, 王平, 郭峰. 不同干燥方法对金钗石斛鲜品中石斛碱含量的影响[J]. 辽宁中医药大学学报, 2012(1): 190-191. https://www.cnki.com.cn/Article/CJFDTOTAL-LZXB201201086.htm
    [66]
    郭鑫, 乔宇航, 朱春璐, 等. 微波真空干燥对胆黄连配方颗粒中间体生物碱类成分的影响研究[J]. 中南药学, 2020, 18(4): 676-679. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYX202004033.htm
    [67]
    覃冬杰, 黄瑞松, 刘华钢, 等. 不同干燥方法对钩藤药材中钩藤碱含量的影响[J]. 广西医科大学学报, 2011, 28(3): 345-347. doi: 10.3969/j.issn.1005-930X.2011.03.006
    [68]
    张颖, 刘理南, 赵燕清. 钩藤提取工艺研究[J]. 中成药, 2000, 22(5): 331-332. doi: 10.3969/j.issn.1001-1528.2000.05.006
    [69]
    刘钊圻, 叶萌, 林海建, 等. 黄柏加工方法的优化研究[J]. 林业实用技术, 2007(6): 7-9. https://www.cnki.com.cn/Article/CJFDTOTAL-LYKT200706004.htm
    [70]
    刘环香, 周本宏, 冯兰珠, 等. 不同干燥方法对黄连中小檗碱含量的影响[J]. 中国中药杂志, 1993, 18(5): 282-283. doi: 10.3321/j.issn:1001-5302.1993.05.009
    [71]
    孙欣光, 张洁, 庞旭, 等. 天然黄酮苷的代谢途径研究进展[J]. 中草药, 2020, 51(11): 3078-3089. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202011028.htm
    [72]
    MASEKO I, MABHAUDHI T, NCUBE B, et al. Postharvest drying maintains phenolic, flavonoid and gallotannin content of some cultivated African leafy vegetables[J]. Sci Hortic, 2019, 255: 70-76. doi: 10.1016/j.scienta.2019.05.019
    [73]
    姜珊, 马青琳, 张康华, 等. 不同干燥方法对金银花叶主要成分的影响[J]. 中国饲料, 2020(11): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-SLGZ202011005.htm
    [74]
    LOU SN, LAI YC, HUANG JD, et al. Drying effect on flavonoid composition and antioxidant activity of immature kumquat[J]. Food Chem, 2015, 171: 356-363. doi: 10.1016/j.foodchem.2014.08.119
    [75]
    顾熟琴, 盛文军, 卢大新. 热风干燥和微波干燥对油枣总黄酮含量影响的研究[J]. 食品科学, 2004, 25(11): 154-157. doi: 10.3321/j.issn:1002-6630.2004.11.034
    [76]
    邢颖, 张月, 徐怀德, 等. 不同干燥方法对生姜叶活性成分和抗氧化活性的影响[J]. 食品工业科技, 2020, 41(18): 75-80, 86. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ202018012.htm
    [77]
    常秀莲, 王长海, 冯咏梅, 等. 库拉索芦荟凝胶黏度及多糖的热稳定性研究[J]. 精细化工, 2004, 21(7): 496-498, 509. doi: 10.3321/j.issn:1003-5214.2004.07.005
    [78]
    方伟, 胡慧, 刘慧芹, 等. 不同干燥温度对天麻主要成分含量的影响[J]. 怀化学院学报, 2019, 38(11): 1-5. doi: 10.3969/j.issn.1671-9743.2019.11.001
    [79]
    AHMADI S, SHEIKH-ZEINODDIN M, SOLEIMANIAN-ZAD S, et al. Effects of different drying methods on the physicochemical properties and antioxidant activities of isolated acorn polysaccharides[J]. LWT, 2019, 100: 1-9. doi: 10.1016/j.lwt.2018.10.027
    [80]
    DENG LZ, PAN ZL, ZHANG Q, et al. Effects of ripening stage on physicochemical properties, drying kinetics, pectin polysaccharides contents and nanostructure of apricots[J]. Carbohydr Polym, 2019, 222: 114980. doi: 10.1016/j.carbpol.2019.114980
    [81]
    邱华振, 杨昳津, 胡健, 等. 金银花醇提物对水溶性红曲色素的护色作用研究[J]. 食品工业科技, 2019, 40(15): 178-183. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201915029.htm
    [82]
    宗侃侃, 于国光, 刘玉红, 等. 浙贝母最佳干燥条件的选择[J]. 浙江农业科学, 2020, 61(11): 2250-2252. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJNX202011018.htm
    [83]
    ONG SP, LAW CL. Drying kinetics and antioxidant phytochemicals retention of salak fruit under different drying and pretreatment conditions[J]. Dry Technol, 2011, 29(4): 429-441. doi: 10.1080/07373937.2010.503332
    [84]
    KUROZAWA LE, TERNG I, HUBINGER MD, et al. Ascorbic acid degradation of Papaya during drying: Effect of process conditions and glass transition phenomenon[J]. J Food Eng, 2014, 123: 157-164. doi: 10.1016/j.jfoodeng.2013.08.039
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(6)

    Article Metrics

    Article views (989) PDF downloads(194) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return