Volume 37 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
SUN Qiu-shuang, GUO Ya-ting, ZHUANG Yu, HUANG Fang, QIU Zhi-xia. Research Progress of Curcumin for the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(4): 625-631. doi: 10.14148/j.issn.1672-0482.2021.0625
Citation: SUN Qiu-shuang, GUO Ya-ting, ZHUANG Yu, HUANG Fang, QIU Zhi-xia. Research Progress of Curcumin for the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(4): 625-631. doi: 10.14148/j.issn.1672-0482.2021.0625

Research Progress of Curcumin for the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease

doi: 10.14148/j.issn.1672-0482.2021.0625
  • Received Date: 2021-03-05
    Available Online: 2021-12-21
  • Publish Date: 2021-07-10
  • Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases in the world with rising incidence. Curcumin, a polyphenolic compound extracted from turmeric, a plant of Zingiberaceae, has very extensive biological activities. A large number of studies have confirmed that curcumin showed good antiatheroscloresis, anti-oxidation, anti-inflammation, anti-fibrosis and other pharmacological activities. It has a significant effect on a variety of metabolic diseases such as NAFLD, obesity, insulin resistance and so on. Therefore, curcumin has important clinical value and broad application prospects. This paper summarized the potential mechanisms of curcumin in the treatment of NAFLD, aiming to provide reference for the treatment of metabolic diseases, and to promote its possible clinical application in the prevention and treatment of NAFLD and other lipid metabolism related diseases.

     

  • loading
  • [1]
    COTTER TG, RINELLA M. Nonalcoholic fatty liver disease 2020: The state of the disease[J]. Gastroenterology, 2020, 158(7): 1851-1864. doi: 10.1053/j.gastro.2020.01.052
    [2]
    YOUNOSSI Z, ANSTEE QM, MARIETTI M, et al. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(1): 11-20. doi: 10.1038/nrgastro.2017.109
    [3]
    SANYAL AJ. Past, present and future perspectives in nonalcoholic fatty liver disease[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(6): 377-386. doi: 10.1038/s41575-019-0144-8
    [4]
    WU YK, ZHENG Q, ZOU BY, et al. The epidemiology of NAFLD in mainland China with analysis by adjusted gross regional domestic product: A meta-analysis[J]. Hepatol Int, 2020, 14(2): 259-269. doi: 10.1007/s12072-020-10023-3
    [5]
    WANG XJ, MALHI H. Nonalcoholic fatty liver disease[J]. Ann Intern Med, 2018, 169(9): ITC65-ITC80. doi: 10.7326/AITC201811060
    [6]
    RINELLA ME. Nonalcoholic fatty liver disease: A systematic review[J]. JAMA, 2015, 313(22): 2263-2273. doi: 10.1001/jama.2015.5370
    [7]
    NEUSCHWANDER-TETRI BA. Therapeutic landscape for NAFLD in 2020[J]. Gastroenterology, 2020, 158(7): 1984-1998. doi: 10.1053/j.gastro.2020.01.051
    [8]
    SUMIDA Y, YONEDA M. Current and future pharmacological therapies for NAFLD/NASH[J]. J Gastroenterol, 2018, 53(3): 362-376. doi: 10.1007/s00535-017-1415-1
    [9]
    YAN TT, YAN NN, WANG P, et al. Herbal drug discovery for the treatment of nonalcoholic fatty liver disease[J]. Acta Pharm Sin B, 2020, 10(1): 3-18. doi: 10.1016/j.apsb.2019.11.017
    [10]
    ESATBEYOGLU T, HUEBBE P, ERNST IM, et al. Curcumin: From molecule to biological function[J]. Angew Chem Int Ed Engl, 2012, 51(22): 5308-5332. doi: 10.1002/anie.201107724
    [11]
    崔晶, 翟光喜, 娄红祥. 姜黄素的研究进展[J]. 中南药学, 2005, 3(2): 108-111. doi: 10.3969/j.issn.1672-2981.2005.02.019
    [12]
    MENON VP, SUDHEER AR. Antioxidant and anti-inflammatory properties of curcumin[J]. Adv Exp Med Biol, 2007, 595: 105-125. http://pdfs.semanticscholar.org/01b2/367ae40b4a9fd32a1523d71306314dd04c34.pdf
    [13]
    AGGARWAL BB. Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals[J]. Annu Rev Nutr, 2010, 30: 173-199. doi: 10.1146/annurev.nutr.012809.104755
    [14]
    KUNNUMAKKARA AB, BORDOLOI D, PADMAVATHI G, et al. Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases[J]. Br J Pharmacol, 2017, 174(11): 1325-1348. doi: 10.1111/bph.13621
    [15]
    SALEHI B, STOJANOVIC-RADIC Z, MATEJIC J, et al. The therapeutic potential of curcumin: A review of clinical trials[J]. Eur J Med Chem, 2019, 163: 527-545. doi: 10.1016/j.ejmech.2018.12.016
    [16]
    GUPTA SC, PATCHVA S, AGGARWAL BB. Therapeutic roles of curcumin: Lessons learned from clinical trials[J]. Aaps J, 2013, 15(1): 195-218. doi: 10.1208/s12248-012-9432-8
    [17]
    RAHMANI S, ASGARY S, ASKARI G, et al. Treatment of non-alcoholic fatty liver disease with curcumin: A randomized placebo-controlled trial[J]. Phytother Res, 2016, 30(9): 1540-1548. doi: 10.1002/ptr.5659
    [18]
    AGGARWAL BB, SUNG B. Pharmacological basis for the role of curcumin in chronic diseases: An age-old spice with modern targets[J]. Trends Pharmacol Sci, 2009, 30(2): 85-94. doi: 10.1016/j.tips.2008.11.002
    [19]
    GENG Y, FABER KN, DE MEIJER VE, et al. How does hepatic lipid accumulation lead to lipotoxicity in non-alcoholic fatty liver disease?[J]. Hepatol Int, 2021, 15(1): 21-35. doi: 10.1007/s12072-020-10121-2
    [20]
    GINSBERG HN. Selective trafficking of fatty acids in the liver: Add Them2 to the list of influencers[J]. Hepatology, 2019, 70(2): 462-464. doi: 10.1002/hep.30800
    [21]
    DONNELLY KL, SMITH CI, SCHWARZENBERG SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease[J]. J Clin Invest, 2005, 115(5): 1343-1351. doi: 10.1172/JCI23621
    [22]
    ARAB JP, ARRESE M, TRAUNER M. Recent insights into the pathogenesis of nonalcoholic fatty liver disease[J]. Annu Rev Pathol, 2018, 13: 321-350. doi: 10.1146/annurev-pathol-020117-043617
    [23]
    LAMBERT JE, RAMOS-ROMAN MA, BROWNING JD, et al. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease[J]. Gastroenterology, 2014, 146(3): 726-735. doi: 10.1053/j.gastro.2013.11.049
    [24]
    WEI ZC, LIU N, TANTAI XX, et al. The effects of curcumin on the metabolic parameters of non-alcoholic fatty liver disease: A meta-analysis of randomized controlled trials[J]. Hepatol Int, 2019, 13(3): 302-313. doi: 10.1007/s12072-018-9910-x
    [25]
    JANG EM, CHOI MS, JUNG UJ, et al. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters[J]. Metabolism, 2008, 57(11): 1576-1583. doi: 10.1016/j.metabol.2008.06.014
    [26]
    AMEER F, SCANDIUZZI L, HASNAIN S, et al. De novo lipogenesis in health and disease[J]. Metabolism, 2014, 63(7): 895-902. doi: 10.1016/j.metabol.2014.04.003
    [27]
    MAITHILIKARPAGASELVI N, SRIDHAR MG, SWAMINATHAN RP, et al. Curcumin inhibits hyperlipidemia and hepatic fat accumulation in high-fructose-fed male Wistar rats[J]. Pharm Biol, 2016, 54(12): 2857-2863. doi: 10.1080/13880209.2016.1187179
    [28]
    CUNNINGHAM RP, MOORE MP, MOORE AN, et al. Curcumin supplementation mitigates NASH development and progression in female Wistar rats[J]. Physiol Rep, 2018, 6(14): e13789. doi: 10.14814/phy2.13789
    [29]
    KABIRIFAR R, GHORESHI ZAS, REZAIFAR A, et al. Curcumin, quercetin and atorvastatin protected against the hepatic fibrosis by activating AMP-activated protein kinase[J]. J Funct Foods, 2018, 40: 341-348. doi: 10.1016/j.jff.2017.11.020
    [30]
    NTAMBI JM. Hepatic de novo lipogenesis and regulation of metabolism[M]. Cham: Springer International Publishing, 2016.
    [31]
    IACOBAZZI V, INFANTINO V. Citrate: New functions for an old metabolite[J]. Biol Chem, 2014, 395(4): 387-399. doi: 10.1515/hsz-2013-0271
    [32]
    WILLIAMS NC, O'NEILL LAJ. A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation[J]. Front Immunol, 2018, 9: 141. doi: 10.3389/fimmu.2018.00141
    [33]
    BIRKENFELD AL, LEE HY, GUEBRE-EGZIABHER F, et al. Deletion of the mammalian INDY homolog mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice[J]. Cell Metab, 2011, 14(2): 184-195. doi: 10.1016/j.cmet.2011.06.009
    [34]
    牛群, 孙秋爽, 邱志霞, 等. SLC13A5作为代谢性疾病潜在药物作用靶点的研究进展[J]. 中国药科大学学报, 2020, 51(5): 607-613. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYD202005014.htm
    [35]
    SUITER C, SINGHA SK, KHALILI R, et al. Free fatty acids: Circulating contributors of metabolic syndrome[J]. Cardiovasc Hematol Agents Med Chem, 2018, 16(1): 20-34. doi: 10.2174/1871525716666180528100002
    [36]
    KAZANTZIS M, STAHL A. Fatty acid transport proteins, implications in physiology and disease[J]. Biochim Biophys Acta, 2012, 1821(5): 852-857. doi: 10.1016/j.bbalip.2011.09.010
    [37]
    GOUNDEN V, VASHISHT R, JIALAL I. Hypoalbuminemia[EB/OL]. (2021-04-01)[2021-06-29]. https://www.statpearls.com/articlelibrary/viewarticle/23253/.
    [38]
    BLINDAUER CA, KHAZAIPOUL S, YU R, et al. Fatty acid-mediated inhibition of metal binding to the multi-metal site on serum albumin: Implications for cardiovascular disease[J]. Curr Top Med Chem, 2016, 16(27): 3021-3032. doi: 10.2174/1568026616666160216155927
    [39]
    WILSON CG, TRAN JL, ERION DM, et al. Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice[J]. Endocrinology, 2016, 157(2): 570-585. doi: 10.1210/en.2015-1866
    [40]
    ENOOKU K, TSUTSUMI T, KONDO M, et al. Hepatic FATP5 expression is associated with histological progression and loss of hepatic fat in NAFLD patients[J]. J Gastroenterol, 2020, 55(2): 227-243. doi: 10.1007/s00535-019-01633-2
    [41]
    DOEGE H, BAILLIE RA, ORTEGON AM, et al. Targeted deletion of FATP5 reveals multiple functions in liver metabolism: Alterations in hepatic lipid homeostasis[J]. Gastroenterology, 2006, 130(4): 1245-1258. doi: 10.1053/j.gastro.2006.02.006
    [42]
    PEREZ VM, GABELL J, BEHRENS M, et al. Deletion of fatty acid transport protein 2 (FATP2) in the mouse liver changes the metabolic landscape by increasing the expression of PPARα-regulated genes[J]. J Biol Chem, 2020, 295(17): 5737-5750. doi: 10.1074/jbc.RA120.012730
    [43]
    CHEN AP, TANG YC, DAVIS V, et al. Liver fatty acid binding protein (L-Fabp) modulates murine stellate cell activation and diet-induced nonalcoholic fatty liver disease[J]. Hepatology, 2013, 57(6): 2202-2212. doi: 10.1002/hep.26318
    [44]
    FURUHASHI M, HOTAMISLIGIL GS. Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets[J]. Nat Rev Drug Discov, 2008, 7(6): 489-503. doi: 10.1038/nrd2589
    [45]
    MUN J, KIM S, YOON HG, et al. Water extract of Curcuma longa L. ameliorates non-alcoholic fatty liver disease[J]. Nutrients, 2019, 11(10): E2536. doi: 10.3390/nu11102536
    [46]
    LIU Y, CHENG F, LUO YX, et al. PEGylated curcumin derivative attenuates hepatic steatosis via CREB/PPAR-γ /CD36 pathway[J]. Biomed Res Int, 2017, 2017: 8234507. http://gooa.las.ac.cn/external/download/1424705/5944300/8234507.pdf
    [47]
    DING LL, LI JM, SONG BL, et al. Curcumin rescues high fat diet-induced obesity and insulin sensitivity in mice through regulating SREBP pathway[J]. Toxicol Appl Pharmacol, 2016, 304: 99-109. doi: 10.1016/j.taap.2016.05.011
    [48]
    ROSEN ED, SPIEGELMAN BM. Adipocytes as regulators of energy balance and glucose homeostasis[J]. Nature, 2006, 444(7121): 847-853. doi: 10.1038/nature05483
    [49]
    LANGIN D. Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome[J]. Pharmacol Res, 2006, 53(6): 482-491. doi: 10.1016/j.phrs.2006.03.009
    [50]
    WANG LL, ZHANG BL, HUANG F, et al. Curcumin inhibits lipolysis via suppression of ER stress in adipose tissue and prevents hepatic insulin resistance[J]. J Lipid Res, 2016, 57(7): 1243-1255. doi: 10.1194/jlr.M067397
    [51]
    QIU ZX, ZHANG SH, LI AY, et al. The role of curcumin in disruption of HIF-1α accumulation to alleviate adipose fibrosis via AMPK-mediated mTOR pathway in high-fat diet fed mice[J]. J Funct Foods, 2017, 33: 155-165. doi: 10.1016/j.jff.2017.03.035
    [52]
    REDDY JK, RAO MS. Lipid metabolism and liver inflammation. Ⅱ. Fatty liver disease and fatty acid oxidation[J]. Am J Physiol Gastrointest Liver Physiol, 2006, 290(5): G852-G858. doi: 10.1152/ajpgi.00521.2005
    [53]
    HOUTEN SM, WANDERS RJ. A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation[J]. J Inherit Metab Dis, 2010, 33(5): 469-477. doi: 10.1007/s10545-010-9061-2
    [54]
    PAWLAK M, LEFEBVRE P, STAELS B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease[J]. J Hepatol, 2015, 62(3): 720-733. doi: 10.1016/j.jhep.2014.10.039
    [55]
    BONNEFONT JP, DJOUADI F, PRIP-BUUS C, et al. Carnitine palmitoyltransferases 1 and 2: Biochemical, molecular and medical aspects[J]. Mol Aspects Med, 2004, 25(5/6): 495-520. http://www.onacademic.com/detail/journal_1000035417370710_44fa.html
    [56]
    EJAZ A, WU DY, KWAN P, et al. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice[J]. J Nutr, 2009, 139(5): 919-925. doi: 10.3945/jn.108.100966
    [57]
    UM MY, HWANG KH, AHN J, et al. Curcumin attenuates diet-induced hepatic steatosis by activating AMP-activated protein kinase[J]. Basic Clin Pharmacol Toxicol, 2013, 113(3): 152-157. doi: 10.1111/bcpt.12076
    [58]
    FRIEDMAN SL, NEUSCHWANDER-TETRI BA, RINELLA M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7): 908-922. doi: 10.1038/s41591-018-0104-9
    [59]
    SCHUSTER S, CABRERA D, ARRESE M, et al. Triggering and resolution of inflammation in NASH[J]. Nat Rev Gastroenterol Hepatol, 2018, 15(6): 349-364. doi: 10.1038/s41575-018-0009-6
    [60]
    BRAUNERSREUTHER V, VIVIANI GL, MACH F, et al. Role of cytokines and chemokines in non-alcoholic fatty liver disease[J]. World J Gastroenterol, 2012, 18(8): 727-735. doi: 10.3748/wjg.v18.i8.727
    [61]
    JURENKA JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: A review of preclinical and clinical research[J]. Altern Med Rev, 2009, 14(2): 141-153. http://www.ncbi.nlm.nih.gov/pubmed/19594223/
    [62]
    ZHOU HY, BEEVERS CS, HUANG SL. The targets of curcumin[J]. Curr Drug Targets, 2011, 12(3): 332-347. doi: 10.2174/138945011794815356
    [63]
    WEI W, PENG J, LI J. Curcumin attenuates hypoxia/reoxygenation-induced myocardial injury[J]. Mol Med Rep, 2019, 20(6): 4821-4830. http://www.ncbi.nlm.nih.gov/pubmed/31638219
    [64]
    WIECKOWSKA A, PAPOUCHADO BG, LI ZZ, et al. Increased hepatic and circulating interleukin-6 levels in human nonalcoholic steatohepatitis[J]. Am J Gastroenterol, 2008, 103(6): 1372-1379.
    [65]
    CRESPO J, CAYON A, FERNANDEZ-GIL P, et al. Gene expression of tumor necrosis factor alpha and TNF-receptors, p55 and p75, in nonalcoholic steatohepatitis patients[J]. Hepatology, 2001, 34(6): 1158-1163. doi: 10.1053/jhep.2001.29628
    [66]
    AFRIN R, ARUMUGAM S, RAHMAN A, et al. Curcumin ameliorates liver damage and progression of NASH in NASH-HCC mouse model possibly by modulating HMGB1-NF-κB translocation[J]. Int Immunopharmacol, 2017, 44: 174-182. http://www.ncbi.nlm.nih.gov/pubmed/28110063
    [67]
    LECLERCQ IA, FARRELL GC, SEMPOUX C, et al. Curcumin inhibits NF-kappaB activation and reduces the severity of experimental steatohepatitis in mice[J]. J Hepatol, 2004, 41(6): 926-934. http://www.onacademic.com/detail/journal_1000035406130310_82c0.html
    [68]
    LEE DE, LEE SJ, KIM SJ, et al. Curcumin ameliorates nonalcoholic fatty liver disease through inhibition of O-GlcNAcylation[J]. Nutrients, 2019, 11(11): E2702. http://www.ncbi.nlm.nih.gov/pubmed/31717261
    [69]
    ELTZSCHIG HK, CARMELIET P. Hypoxia and inflammation[J]. N Engl J Med, 2011, 364: 656-665. http://pubmedcentralcanada.ca/pmcc/articles/PMC3930928/
    [70]
    SEMENZA GL. Hypoxia-inducible factor 1 (HIF-1) pathway[J]. Sci STKE, 2007, 2007(407): cm8.
    [71]
    HUANG Y, DENG X, LIANG J. Modulation of hepatic stellate cells and reversibility of hepatic fibrosis[J]. Exp Cell Res, 2017, 352(2): 420-426. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S0014482717300927&originContentFamily=serial&_origin=article&_ts=1488297029&md5=5b234bb35a369f7eebcd8137c9e9eeb2
    [72]
    CHEN Z, JAIN A, LIU H, et al. Targeted drug delivery to hepatic stellate cells for the treatment of liver fibrosis[J]. J Pharmacol Exp Ther, 2019, 370(3): 695-702. http://jpet.aspetjournals.org/content/early/2019/03/18/jpet.118.256156.full.pdf
    [73]
    COLL M, PEREA L, BOON R, et al. Generation of hepatic stellate cells from human pluripotent stem cells enables in vitro modeling of liver fibrosis[J]. Cell Stem Cell, 2018, 23(1): 101-113. http://www.sciencedirect.com/science?_ob=ShoppingCartURL&_method=add&_eid=1-s2.0-S1934590918302820&originContentFamily=serial&_origin=article&_ts=1530281809&md5=14651e031a8d452f6dc320d414bfccda
    [74]
    [75]
    LIN JG, ZHENG SZ, CHEN AP. Curcumin attenuates the effects of insulin on stimulating hepatic stellate cell activation by interrupting insulin signaling and attenuating oxidative stress[J]. Lab Invest, 2009, 89(12): 1397-1409. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2787823/pdf/nihms-137922.pdf
    [76]
    TANG YC, ZHENG SZ, CHEN AP. Curcumin eliminates leptin's effects on hepatic stellate cell activation via interrupting leptin signaling[J]. Endocrinology, 2009, 150(7): 3011-3020. http://endo.endojournals.org/content/150/7/3011.full.pdf
    [77]
    ZENG KJ, TIAN LL, SIREK A, et al. Pak1 mediates the stimulatory effect of insulin and curcumin on hepatic ChREBP expression[J]. J Mol Cell Biol, 2017, 9(5): 384-394. http://europepmc.org/abstract/MED/28992163
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)  / Tables(1)

    Article Metrics

    Article views (353) PDF downloads(222) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return