Volume 37 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
JIN Chuan-yang, ZHU Hai-bin, XIONG Jia-wei, ZHANG Jian-bin. Standardization Research on Quantification of Acupuncture Manipulation Stimuli Based on Brain-Computer Interface[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(4): 587-591. doi: 10.14148/j.issn.1672-0482.2021.0587
Citation: JIN Chuan-yang, ZHU Hai-bin, XIONG Jia-wei, ZHANG Jian-bin. Standardization Research on Quantification of Acupuncture Manipulation Stimuli Based on Brain-Computer Interface[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(4): 587-591. doi: 10.14148/j.issn.1672-0482.2021.0587

Standardization Research on Quantification of Acupuncture Manipulation Stimuli Based on Brain-Computer Interface

doi: 10.14148/j.issn.1672-0482.2021.0587
  • Received Date: 2021-04-25
    Available Online: 2021-12-21
  • Publish Date: 2021-07-10
  • Based on the brain-computer interface technology, we analyzed the problems related to the number of stimuli and treatment effect of acupuncture, so as to make a preliminary overview about standardization research on the quantification of acupuncture manipulation stimuli. It is proposed that the characteristics of the quantitative study of acupuncture manipulation stimuli based on a brain-computer interface include a large amount of data, stable data flow, as well as quantification and objection along with a high degree of freedom in analysis. It is suggested that the focus of data acquisition at the brain-computer interface from a clinical perspective of acupuncture manipulation includes four aspects: the overall connectivity of neural networks, the activity of specific brain areas, the fluctuation of body tolerance or pain threshold during acupuncture intervention, and the activity change of different lamina neurons of the cortex. The efficacy evaluation of acupuncture interventions in post-stroke rehabilitation is used as an example to illustrate the study characteristics and potential advantages of standardization research on the quantification of acupuncture manipulation stimuli based on brain-computer interface.

     

  • loading
  • [1]
    KRUCOFF MO, RAHIMPOUR S, SLUTZKY MW, et al. Enhancing nervous system recovery through neurobiologics, neural interface training, and neurorehabilitation[J ]. Front Neurosci, 2016, 10: 584. http://www.researchgate.net/profile/Max_Krucoff/publication/311919389_Enhancing_Nervous_System_Recovery_through_Neurobiologics_Neural_Interface_Training_and_Neurorehabilitation/links/587d620c08ae9a860ff0fcec.pdf
    [2]
    VIDAL JJ. Toward direct brain-computer communication[J]. Annu Rev Biophys Bioeng, 1973, 2 : 157-180. doi: 10.1146/annurev.bb.02.060173.001105
    [3]
    LEVINE SP, HUGGINS JE, BEMENT SL, et al. A direct brain interface based on event-related potentials[J ]. IEEE Trans Rehabil Eng, 2000, 8(2) : 180-185. doi: 10.1109/86.847809
    [4]
    VANNESTE S, SONG JJ, DE RIDDER D. Thalamocortical dysrhythmia detected by machine learning[J]. Nat Commun, 2018, 9(1) : 1103. doi: 10.1038/s41467-018-02820-0
    [5]
    傅立新. 从针刺手法量学的系列研究看针灸科研与临床实践的关系[C]. 杭州: 中国针灸学会2009学术年会, 2009 : 2.
    [6]
    石学敏. 捻转补泻手法的应用及其量学概念[J]. 中国医药学报, 1987, 2(5) : 272-273. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY198705004.htm
    [7]
    朱琏. 新针灸学[M]. 南宁: 广西人民出版社, 1980: 11-16.
    [8]
    承淡安. 中国针灸学[M]. 北京: 人民卫生出版社, 1955 : 16.
    [9]
    王季春. 从针刺手法量学的系列研究看针灸科研与临床实践的关系[J]. 实用中医内科杂志, 2020: 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-SYZY202108046.htm
    [10]
    马旭, 沈婧蕾, 杨华元. 针刺手法参数采集及量效关系分析[J]. 上海针灸杂志, 2020, 39(11) : 1479-1482. https://www.cnki.com.cn/Article/CJFDTOTAL-SHZJ202011026.htm
    [11]
    CAI RL, SHEN GM, WANG H, et al. Brain functional connectivity network studies of acupuncture: A systematic review on resting-state fMRI[J]. JIntegr Med, 2018, 16(1) : 26-33. http://www.cqvip.com/QK/87110A/20181/674409085.html
    [12]
    张青, 余玲玲, 刘诗琴, 等. 关于针刺得气中枢响应的fMRI研究现状与思索[J]. 针刺研究, 2018, 43(5) : 330-334. https://www.cnki.com.cn/Article/CJFDTOTAL-XCYJ201805016.htm
    [13]
    李香淑, 胡佳慧, 鲁海, 等. 基于fMRI技术探讨电针与手针中枢机制响应差异[J]. 分子影像学杂志, 2020, 43 (1) : 12-15. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYX202001030.htm
    [14]
    YADAV D, YADAV S, VEER K. A comprehensive assessment of brain computer interfaces: Recent trends and challenges[J]. J Neurosci Methods, 2020, 346 : 108918. doi: 10.1016/j.jneumeth.2020.108918
    [15]
    HUANG K, LIANG S, SUN Z, et al. Startup mechanism of moxibustion warming and dredging function[J]. Chin Acupunct Moxib, 2017, 37(9) : 1023-1026. http://europepmc.org/abstract/MED/29354927
    [16]
    CARLSON D, CARIN L. Continuing progress of spike sorting in the era of big data[J]. Curr Opin Neurobiol, 2019, 55 : 90- 96. doi: 10.1016/j.conb.2019.02.007
    [17]
    ZONG W, WU R, CHEN S, et al. Miniature two-photon microscopy for enlarged field-of-view, multi-plane and long-term brain imaging[J]. Nat Methods, 2021, 18(1) : 46-49. doi: 10.1038/s41592-020-01024-z
    [18]
    VON BARTHELD CS, BAHNEY J, HERCULANO - HOUZEL S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting[J]. J Comp Neurol, 2016, 524(18) : 3865-3895. doi: 10.1002/cne.24040
    [19]
    OXLEY TJ, YOO PE, RIND GS, etal. Motor neuroprosthesis implanted with neurointerventional surgery improves capacity for activities of daily living tasks in severe paralysis: first in-human experience[J]. J Neurointerv Surg, 2021, 13 (2) : 102-108. doi: 10.1136/neurintsurg-2020-016862
    [20]
    SAHA S, MAMUN KA, AHMED K, etal. Progress in brain computer interface: Challenges and opportunities[J ]. Front Syst Neurosci, 2021, 15 : 578-875.
    [21]
    HE Z, LI Z, YANG F, etal. Advances in multimodal emotion recognition based on brain-computer interfaces[J]. Brain Sci, 2020, 10(10) : 687. doi: 10.3390/brainsci10100687
    [22]
    SU F, XU W. Enhancing brain plasticity to promote stroke recovery[J]. Front Neurol, 2020, 11 : 554089. doi: 10.3389/fneur.2020.554089
    [23]
    SMALL SL, BUCCINO G, SOLODKIN A. Brain repair after stroke: A novel neurological model[J ]. Nat Rev Neurol, 2013, 9(12) : 698-707. http://europepmc.org/abstract/med/24217509
    [24]
    DIMYAN MA, COHEN LG. Neuroplasticity in the context of motor rehabilitation after stroke[J]. Nat Rev Neurol, 2011, 7 (2) : 76-85. doi: 10.1038/nrneurol.2010.200
    [25]
    ZHANG R, LAO L, REN K, et al. Mechanisms of acupuncture-electroacupuncture on persistent pain[J ]. Anesthesiology, 2014, 120(2) : 482-503. doi: 10.1097/ALN.0000000000000101
    [26]
    KIM SK, BAE H. Acupuncture and immune modulation[J]. Autonom Neurosc Basic Clin, 2010, 157(1/2) : 38-41. http://www.ncbi.nlm.nih.gov/pubmed/20399151
    [27]
    HAN JS. Acupuncture: Neuropeptide release produced by electrical stimulation of different frequencies[J ]. Trends Neurosci, 2003, 26(1) : 17-22. doi: 10.1016/S0166-2236(02)00006-1
    [28]
    MOLYNEAUX BJ, ARLOTTA P, MENEZES JR, et al. Neuronal subtype specification in the cerebral cortex[J]. Nat Rev Neurosci, 2007, 8(6) : 427-437. doi: 10.1038/nrn2151
    [29]
    HOCHBERG LR. Intracortical brain-computer interfaces for the restoration of communication and mobility[J]. Biophys J, 2013, 104(2) : 376. http://www.onacademic.com/detail/journal_1000035856305810_ffa6.html
    [30]
    CAJIGAS I, VEDANTAM A. Brain-computer interface, neuromodulation, and neurorehabilitation strategies for spinal cord injury[J]. Neurosurg Clin N Am, 2021, 32(3) : 407-417. doi: 10.1016/j.nec.2021.03.012
    [31]
    WEN D, FAN Y, HSU SH, etal. Combining brain-computer interface and virtual reality for rehabilitation in neurological diseases: A narrative review[J ]. Ann Phys Rehabil Med, 2021, 64(1) : 101404. doi: 10.1016/j.rehab.2020.03.015
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (284) PDF downloads(137) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return