Volume 37 Issue 3
May  2021
Turn off MathJax
Article Contents
CHEN Xiu-zhen, YAN Xin-yu, YU Cheng-li, ZHANG Yi-nan. Research Progresses on Target Identification of Natural Products by Chemoproteomics[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(3): 337-347. doi: 10.14148/j.issn.1672-0482.2021.0337
Citation: CHEN Xiu-zhen, YAN Xin-yu, YU Cheng-li, ZHANG Yi-nan. Research Progresses on Target Identification of Natural Products by Chemoproteomics[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(3): 337-347. doi: 10.14148/j.issn.1672-0482.2021.0337

Research Progresses on Target Identification of Natural Products by Chemoproteomics

doi: 10.14148/j.issn.1672-0482.2021.0337
  • Received Date: 2021-03-05
    Available Online: 2021-12-21
  • Publish Date: 2021-05-10
  • Finding new natural product-based drugs from the resources of traditional Chinese medical herbs can rapidly promote the modernization of traditional Chinese medicine. The bottleneck in the development of natural product based-drugs is their unknown protein targets and unclear mechanisms of action. Recently, a growing number of methods for the target identification of medicinal compounds have emerged, in relation to explicitly reveal their pharmacological mechanisms and toxic side effects. Particularly, mass-based chemoproteomic methods for the target identification, which can be applied with complicated biological models, has the advantages of high reproducibility and high accuracy in indiscriminately determining the protein targets. Since it becomes the most important tool in the discovery of natural product targets, herein we would like to provide a holistic perspective of these chemoproteomic methods, including their principles, pros and cons, the range of application, and representative examples.

     

  • loading
  • [1]
    SOROKINA M, STEINBECK C. Review on natural products databases: Where to find data in 2020[J]. J Cheminform, 2020, 12(1): 20. doi: 10.1186/s13321-020-00424-9
    [2]
    SHEN B. A new golden age of natural products drug discovery[J]. Cell, 2015, 163(6): 1297-1300. doi: 10.1016/j.cell.2015.11.031
    [3]
    BEUTLER JA. Natural products as a foundation for drug discovery[J]. Curr Protoc Pharmacol, 2019, 86(1): e67. http://europepmc.org/articles/PMC2813068?pdf=render
    [4]
    LI G, LOU HX. Strategies to diversify natural products for drug discovery[J]. Med Res Rev, 2018, 38(4): 1255-1294. doi: 10.1002/med.21474
    [5]
    ZIEGLER S, PRIES V, HEDBERG C, et al. Target identification for small bioactive molecules: Finding the needle in the haystack[J]. Angew Chem Int Ed Engl, 2013, 52(10): 2744-2792. doi: 10.1002/anie.201208749
    [6]
    SCHENONE M, DANCIK V, WAGNER BK, et al. Target identification and mechanism of action in chemical biology and drug discovery[J]. Nat Chem Biol, 2013, 9(4): 232-240. doi: 10.1038/nchembio.1199
    [7]
    FLAXMAN HA, WOO CM. Mapping the small molecule interactome by mass spectrometry[J]. Biochemistry, 2018, 57(2): 186-193. doi: 10.1021/acs.biochem.7b01038
    [8]
    KAUR U, MENG H, LUI F, et al. Proteome-wide structural biology: An emerging field for the structural analysis of proteins on the proteomic scale[J]. J Proteome Res, 2018, 17(11): 3614-3627. doi: 10.1021/acs.jproteome.8b00341
    [9]
    LIU Y, PATRICELLI MP, CRAVATT BF. Activity-based protein profiling: The serine hydrolases[J]. Proc Natl Acad Sci USA, 1999, 96(26): 14694-14699. doi: 10.1073/pnas.96.26.14694
    [10]
    WILKINSON IVL, TERSTAPPEN GC, RUSSELL AJ. Combining experimental strategies for successful target deconvolution[J]. Drug Discov Today, 2020, 25(11): 1998-2005. doi: 10.1016/j.drudis.2020.09.016
    [11]
    HA J, PARK H, PARK J, et al. Recent advances in identifying protein targets in drug discovery[J]. Cell Chem Biol, 2021, 28(3): 394-423. doi: 10.1016/j.chembiol.2020.12.001
    [12]
    CHEN X, WANG YT, MA N, et al. Target identification of natural medicine with chemical proteomics approach: Probe synthesis, target fishing and protein identification[J]. Signal Transduct Target Ther, 2020, 5(1): 72. doi: 10.1038/s41392-020-0186-y
    [13]
    SLENO L, EMILI A. Proteomic methods for drug target discovery[J]. Curr Opin Chem Biol, 2008, 12(1): 46-54. doi: 10.1016/j.cbpa.2008.01.022
    [14]
    HARDING MW, GALAT A, UEHLING DE, et al. A receptor for the immuno-suppressant FK506 is a Cis-trans peptidyl-prolyl isomerase[J]. Nature, 1989, 341(6244): 758-760. doi: 10.1038/341758a0
    [15]
    SIEKIERKA JJ, HUNG SH, POE M, et al. A cytosolic binding protein for the immunosuppressant FK506 has peptidyl-prolyl isomerase activity but is distinct from cyclophilin[J]. Nature, 1989, 341(6244): 755-757. doi: 10.1038/341755a0
    [16]
    WU R, MURALI R, KABE Y, et al. Baicalein targets GTPase-mediated autophagy to eliminate liver tumor-initiating stem cell-like cells resistant to mTORC1 inhibition[J]. Hepatology, 2018, 68(5): 1726-1740. doi: 10.1002/hep.30071
    [17]
    ITO T, ANDO H, SUZUKI T, et al. Identification of a primary target of thalidomide teratogenicity[J]. Science, 2010, 327(5971): 1345-1350. doi: 10.1126/science.1177319
    [18]
    PROKSOVA M, REHULKOVA H, REHULKA P, et al. Using proteomics to identify host cell interaction partners for VgrG and IglJ[J]. Sci Rep, 2020, 10(1): 14612. doi: 10.1038/s41598-020-71641-3
    [19]
    GONDKAR K, SATHE G, JOSHI N, et al. Integrated proteomic and phosphoproteomics analysis of DKK3 signaling reveals activated kinase in the most aggressive gallbladder cancer[J]. Cells, 2021, 10(3): 511. doi: 10.3390/cells10030511
    [20]
    BANTSCHEFF M, SCHOLTEN A, HECK AJ. Revealing promiscuous drug-target interactions by chemical proteomics[J]. Drug Discov Today, 2009, 14(21/22): 1021-1029. http://www.onacademic.com/detail/journal_1000035039029210_12f2.html
    [21]
    SCHOLTEN A, VAN VEEN TA, VOS MA, et al. Diversity of cAMP-dependent protein kinase isoforms and their anchoring proteins in mouse ventricular tissue[J]. J Proteome Res, 2007, 6(5): 1705-1717. doi: 10.1021/pr060601a
    [22]
    FRIESE A, KAPOOR S, SCHNEIDEWIND T, et al. Chemical genetics reveals a role of dCTP pyrophosphatase 1 in wnt signaling[J]. Angew Chem Int Ed Engl, 2019, 58(37): 13009-13013. doi: 10.1002/anie.201905977
    [23]
    KITAMURA K, ITOH H, SAKURAI K, et al. Target identification of yaku'amide B and its two distinct activities against mitochondrial FoF1-ATP synthase[J]. J Am Chem Soc, 2018, 140(38): 12189-12199. doi: 10.1021/jacs.8b07339
    [24]
    BENNS HJ, WINCOTT CJ, TATE EW, et al. Activity- and reactivity-based proteomics: Recent technological advances and applications in drug discovery[J]. Curr Opin Chem Biol, 2021, 60: 20-29. doi: 10.1016/j.cbpa.2020.06.011
    [25]
    LI L, ZHAO Y, CAO R, et al. Activity-based protein profiling reveals GSTO1 as the covalent target of piperlongumine and a promising target for combination therapy for cancer[J]. Chem Commun, 2019, 55(30): 4407-4410. doi: 10.1039/C9CC00917E
    [26]
    DENG H, LEI Q, WU YP, et al. Activity-based protein profiling: Recent advances in medicinal chemistry[J]. Eur J Med Chem, 2020, 191: 112151. doi: 10.1016/j.ejmech.2020.112151
    [27]
    SU Y, GE JY, ZHU BW, et al. Target identification of biologically active small molecules via in situ methods[J]. Curr Opin Chem Biol, 2013, 17(5): 768-775. doi: 10.1016/j.cbpa.2013.06.005
    [28]
    SADAGHIANI AM, VERHELST SH, BOGYO M. Tagging and detection strategies for activity-based proteomics[J]. Curr Opin Chem Biol, 2007, 11(1): 20-28. doi: 10.1016/j.cbpa.2006.11.030
    [29]
    KALESH KA, SHI HB, GE JY, et al. The use of click chemistry in the emerging field of catalomics[J]. Org Biomol Chem, 2010, 8(8): 1749-1762. doi: 10.1039/b923331h
    [30]
    WRIGHT MH, TAO Y, DRECHSEL J, et al. Quantitative chemoproteomic profiling reveals multiple target interactions of spongiolactone derivatives in leukemia cells[J]. Chem Commun, 2017, 53(95): 12818-12821. doi: 10.1039/C7CC04990K
    [31]
    YOO E, SCHULZE CJ, STOKES BH, et al. The antimalarial natural product salinipostin A identifies essential α/β serine hydrolases involved in lipid metabolism in P. falciparum parasites[J]. Cell Chem Biol, 2020, 27(2): 143-157. doi: 10.1016/j.chembiol.2020.01.001
    [32]
    ADAM GC, VANDERWAL CD, SORENSEN EJ, et al. (-)-FR182877 is a potent and selective inhibitor of carboxylesterase-1[J]. Angewandte Chemie Int Ed, 2003, 42(44): 5480-5484. doi: 10.1002/anie.200352576
    [33]
    KOLB HC, FINN MG, SHARPLESS KB. Click chemistry: Diverse chemical function from a few good reactions[J]. Angew Chem Int Ed Engl, 2001, 40(11): 2004-2021. doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
    [34]
    LAPINSKY DJ, JOHNSON DS. Recent developments and applications of clickable photoprobes in medicinal chemistry and chemical biology[J]. Future Med Chem, 2015, 7(16): 2143-2171. doi: 10.4155/fmc.15.136
    [35]
    SPEERS AE, CRAVATT BF. Profiling enzyme activities in vivo using click chemistry methods[J]. Chem Biol, 2004, 11(4): 535-546. doi: 10.1016/j.chembiol.2004.03.012
    [36]
    UTTAMCHANDANI M, LI JQ, SUN HY, et al. Activity-based protein profiling: New developments and directions in functional proteomics[J]. Chem Bio Chem, 2008, 9(5): 667-675. doi: 10.1002/cbic.200700755
    [37]
    LANNING BR, WHITBY LR, DIX MM, et al. A road map to evaluate the proteome-wide selectivity of covalent kinase inhibitors[J]. Nat Chem Biol, 2014, 10(9): 760-767. doi: 10.1038/nchembio.1582
    [38]
    DAI JY, LIANG K, ZHAO S, et al. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis[J]. Proc Natl Acad Sci USA, 2018, 115(26): E5896-E5905. doi: 10.1073/pnas.1801745115
    [39]
    WEERAPANA E, WANG C, SIMON GM, et al. Quantitative reactivity profiling predicts functional cysteines in proteomes[J]. Nature, 2010, 468(7325): 790-795. doi: 10.1038/nature09472
    [40]
    SPRADLIN JN, HU XR, WARD CC, et al. Harnessing the anti-cancer natural product nimbolide for targeted protein degradation[J]. Nat Chem Biol, 2019, 15(7): 747-755. doi: 10.1038/s41589-019-0304-8
    [41]
    YANG F, GAO JJ, CHE JT, et al. A dimethyl-labeling-based strategy for site-specifically quantitative chemical proteomics[J]. Anal Chem, 2018, 90(15): 9576-9582. doi: 10.1021/acs.analchem.8b02426
    [42]
    KULJANIN M, MITCHELL DC, SCHWEPPE DK, et al. Reimagining high-throughput profiling of reactive cysteines for cell-based screening of large electrophile libraries[J/OL]. Nat Biotechnol, 2021. DOI: 10.1038/s41587-020-00778-3.
    [43]
    CHAN EW, CHATTOPADHAYA S, PANICKER RC, et al. Developing photoactive affinity probes for proteomic profiling: Hydroxamate-based probes for metalloproteases[J]. J Am Chem Soc, 2004, 126(44): 14435-14446. doi: 10.1021/ja047044i
    [44]
    SMITH E, COLLINS I. Photoaffinity labeling in target- and binding-site identification[J]. Future Med Chem, 2015, 7(2): 159-183. doi: 10.4155/fmc.14.152
    [45]
    GEURINK PP, PRELY LM, VAN DER MAREL GA, et al. Photoaffinity labeling in activity-based protein profiling[J]. Top Curr Chem, 2012, 324: 85-113. http://www.ncbi.nlm.nih.gov/pubmed/22028098
    [46]
    SINGH A, THORNTON ER, WESTHEIMER FH. The photolysis of diazoacetylchymotrypsin[J]. J Biol Chem, 1962, 237: 3006-3008. doi: 10.1016/S0021-9258(18)60265-0
    [47]
    Photochemical crosslinking reagents[M]//Photogenerated Reagents in Biochemistry and Molecular Biology. Amsterdam: Elsevier, 1983: 112-137.
    [48]
    DORMAN G, PRESTWICH GD. Using photolabile ligands in drug discovery and development[J]. Trends Biotechnol, 2000, 18(2): 64-77. doi: 10.1016/S0167-7799(99)01402-X
    [49]
    PAN SJ, ZHANG HL, WANG CY, et al. Target identification of natural products and bioactive compounds using affinity-based probes[J]. Nat Prod Rep, 2016, 33(5): 612-620. doi: 10.1039/C5NP00101C
    [50]
    SUMRANJIT J, CHUNG SJ. Recent advances in target characterization and identification by photoaffinity probes[J]. Molecules, 2013, 18(9): 10425-10451. doi: 10.3390/molecules180910425
    [51]
    PARK H, KOO JY, SRIKANTH YV, et al. Nonspecific protein labeling of photoaffinity linkers correlates with their molecular shapes in living cells[J]. Chem Commun, 2016, 52(34): 5828-5831. doi: 10.1039/C6CC01426G
    [52]
    TULLOCH LB, MENZIES SK, FRASER AL, et al. Photo-affinity labelling and biochemical analyses identify the target of trypanocidal simplified natural product analogues[J]. PLoS Negl Trop Dis, 2017, 11(9): e0005886. doi: 10.1371/journal.pntd.0005886
    [53]
    MA N, ZHANG ZM, LEE JS, et al. Affinity-based protein profiling reveals cellular targets of photoreactive anticancer inhibitors[J]. ACS Chem Biol, 2019, 14(12): 2546-2552. doi: 10.1021/acschembio.9b00784
    [54]
    KOLB HC, SHARPLESS KB. The growing impact of click chemistry on drug discovery[J]. Drug Discov Today, 2003, 8(24): 1128-1137. doi: 10.1016/S1359-6446(03)02933-7
    [55]
    SHI HB, ZHANG CJ, CHEN GY, et al. Cell-based proteome profiling of potential dasatinib targets by use of affinity-based probes[J]. J Am Chem Soc, 2012, 134(6): 3001-3014. doi: 10.1021/ja208518u
    [56]
    SHI HB, CHENG XM, SZE SK, et al. Proteome profiling reveals potential cellular targets of staurosporine using a clickable cell-permeable probe[J]. Chem Commun, 2011, 47(40): 11306-11308. doi: 10.1039/c1cc14824a
    [57]
    JELCIC M, WANG K, HUI KL, et al. A photo-clickable ATP-mimetic reveals nucleotide interactors in the membrane proteome[J]. Cell Chem Biol, 2020, 27(8): 1073-1083. doi: 10.1016/j.chembiol.2020.05.010
    [58]
    CHENG K, LEE JS, HAO PL, et al. Tetrazole-based probes for integrated phenotypic screening, affinity-based proteome profiling, and sensitive detection of a cancer biomarker[J]. Angew Chem Int Ed Engl, 2017, 56(47): 15044-15048. doi: 10.1002/anie.201709584
    [59]
    WEST GM, TANG L, FITZGERALD MC. Thermodynamic analysis of protein stability and ligand binding using a chemical modification-and mass spectrometry-based strategy[J]. Anal Chem, 2008, 80(11): 4175-4185. doi: 10.1021/ac702610a
    [60]
    WEST GM, TUCKER CL, XU T, et al. Quantitative proteomics approach for identifying protein-drug interactions in complex mixtures using protein stability measurements[J]. Proc Natl Acad Sci USA, 2010, 107(20): 9078-9082. doi: 10.1073/pnas.1000148107
    [61]
    XU Y, FALK IN, HALLEN MA, et al. Mass spectrometry- and lysine amidination-based protocol for thermodynamic analysis of protein folding and ligand binding interactions[J]. Anal Chem, 2011, 83(9): 3555-3562. doi: 10.1021/ac200211t
    [62]
    XU YR, STRICKLAND EC, FITZGERALD MC. Thermodynamic analysis of protein folding and stability using a tryptophan modification protocol[J]. Anal Chem, 2014, 86(14): 7041-7048. doi: 10.1021/ac501278j
    [63]
    STRICKLAND EC, GEER MA, TRAN DT, et al. Thermodynamic analysis of protein-ligand binding interactions in complex biological mixtures using the stability of proteins from rates of oxidation[J]. Nat Protoc, 2013, 8(1): 148-161. doi: 10.1038/nprot.2012.146
    [64]
    XU YR, WALLACE MA, FITZGERALD MC. Thermodynamic analysis of the geldanamycin-Hsp90 interaction in a whole cell lysate using a mass spectrometry-based proteomics approach[J]. J Am Soc Mass Spectrom, 2016, 27(10): 1670-1676. doi: 10.1007/s13361-016-1457-2
    [65]
    WALKER EJ, BETTINGER JQ, WELLE KA, et al. Global analysis of methionine oxidation provides a census of folding stabilities for the human proteome[J]. PNAS, 2019, 116(13): 6081-6090. doi: 10.1073/pnas.1819851116
    [66]
    ACETO A, DRAGANI B, ALLOCATI N, et al. Analysis by limited proteolysis of domain organization and GSH-site arrangement of bacterial glutathione transferase B1-1[J]. Int J Biochem Cell Biol, 1995, 27(10): 1033-1041. doi: 10.1016/1357-2725(95)00081-Y
    [67]
    DIECKMANN R, PAVELA-VRANCIC M, VON DÖHREN H, et al. Probing the domain structure and ligand-induced conformational changes by limited proteolysis of tyrocidine synthetase 1[J]. J Mol Biol, 1999, 288(1): 129-140. doi: 10.1006/jmbi.1999.2671
    [68]
    POLVERINO DE LAURETO P, SCARAMELLA E, FRIGO M, et al. Limited proteolysis of bovine alpha-lactalbumin: Isolation and characterization of protein domains[J]. Protein Sci, 1999, 8(11): 2290-2303. http://www.onacademic.com/detail/journal_1000034846810010_4ade.html
    [69]
    POLVERINO DE LAURETO P, FRARE E, GOTTARDO R, et al. Molten globule of bovine alpha-lactalbumin at neutral pH induced by heat, trifluoroethanol, and oleic acid: A comparative analysis by circular dichroism spectroscopy and limited proteolysis[J]. Proteins, 2002, 49(3): 385-397. doi: 10.1002/prot.10234
    [70]
    LEUENBERGER P, GANSCHA S, KAHRAMAN A, et al. Cell-wide analysis of protein thermal unfolding reveals determinants of thermostability[J]. Science, 2017, 355(6327): eaai7825. doi: 10.1126/science.aai7825
    [71]
    FENG YH, DE FRANCESCHI G, KAHRAMAN A, et al. Global analysis of protein structural changes in complex proteomes[J]. Nat Biotechnol, 2014, 32(10): 1036-1044. doi: 10.1038/nbt.2999
    [72]
    FONTANA A, DE LAURETO PP, SPOLAORE B, et al. Probing protein structure by limited proteolysis[J]. Acta Biochim Pol, 2004, 51(2): 299-321. doi: 10.18388/abp.2004_3573
    [73]
    PARK C, MARQUSEE S. Pulse proteolysis: A simple method for quantitative determination of protein stability and ligand binding[J]. Nat Methods, 2005, 2(3): 207-212. doi: 10.1038/nmeth740
    [74]
    CHANG Y, SCHLEBACH JP, VERHEUL RA, et al. Simplified proteomics approach to discover protein-ligand interactions[J]. Protein Sci, 2012, 21(9): 1280-1287. doi: 10.1002/pro.2112
    [75]
    LOMENICK B, HAO R, JONAI N, et al. Target identification using drug affinity responsive target stability (DARTS)[J]. Proc Natl Acad Sci USA, 2009, 106(51): 21984-21989. doi: 10.1073/pnas.0910040106
    [76]
    HUANG XH, YAN X, ZHANG QH, et al. Direct targeting of HSP90 with daurisoline destabilizes β-catenin to suppress lung cancer tumorigenesis[J]. Cancer Lett, 2020, 489: 66-78. doi: 10.1016/j.canlet.2020.05.024
    [77]
    GENG J, LIU W, GAO J, et al. Andrographolide alleviates Parkinsonism in MPTP-PD mice via targeting mitochondrial fission mediated by dynamin-related protein 1[J]. Br J Pharmacol, 2019, 176(23): 4574-4591. doi: 10.1111/bph.14823
    [78]
    YOON YJ, KIM YH, LEE YJ, et al. 2'-Hydroxycinnamaldehyde inhibits proliferation and induces apoptosis via signal transducer and activator of transcription 3 inactivation and reactive oxygen species generation[J]. Cancer Sci, 2019, 110(1): 366-378. doi: 10.1111/cas.13852
    [79]
    GUO HJ, XU JQ, HAO PL, et al. Competitive affinity-based proteome profiling and imaging to reveal potential cellular targets of betulinic acid[J]. Chem Commun, 2017, 53(69): 9620-9623. doi: 10.1039/C7CC04190J
    [80]
    CAI YL, ZHENG YF, GU JY, et al. Betulinic acid chemosensitizes breast cancer by triggering ER stress-mediated apoptosis by directly targeting GRP78[J]. Cell Death Dis, 2018, 9(6): 636. doi: 10.1038/s41419-018-0669-8
    [81]
    LOMENICK B, OLSEN RW, HUANG J. Identification of direct protein targets of small molecules[J]. ACS Chem Biol, 2011, 6(1): 34-46. doi: 10.1021/cb100294v
    [82]
    ADHIKARI J, FITZGERALD MC. SILAC-pulse proteolysis: A mass spectrometry-based method for discovery and cross-validation in proteome-wide studies of ligand binding[J]. J Am Soc Mass Spectrom, 2014, 25(12): 2073-2083. doi: 10.1007/s13361-014-0992-y
    [83]
    GEER WALLACE MA, KWON DY, WEITZEL DH, et al. Discovery of manassantin A protein targets using large-scale protein folding and stability measurements[J]. J Proteome Res, 2016, 15(8): 2688-2696. doi: 10.1021/acs.jproteome.6b00237
    [84]
    TRINDADE RV, PINTO AF, SANTOS DS, et al. Pulse proteolysis and precipitation for target identification[J]. J Proteome Res, 2016, 15(7): 2236-2245. doi: 10.1021/acs.jproteome.6b00214
    [85]
    SCHOPPER S, KAHRAMAN A, LEUENBERGER P, et al. Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry[J]. Nat Protoc, 2017, 12(11): 2391-2410. doi: 10.1038/nprot.2017.100
    [86]
    PIAZZA I, KOCHANOWSKI K, CAPPELLETTI V, et al. A map of protein-metabolite interactions reveals principles of chemical communication[J]. Cell, 2018, 172(1/2): 358-372. http://www.onacademic.com/detail/journal_1000040154338010_3bed.html
    [87]
    TRINDADE RV, PINTO AF, SANTOS DS, et al. Pulse proteolysis and precipitation for target identification[J]. J Proteome Res, 2016, 15(7): 2236-2245. doi: 10.1021/acs.jproteome.6b00214
    [88]
    ZENG LF, SHIN WH, ZHU XL, et al. Discovery of nicotinamide adenine dinucleotide binding proteins in the Escherichia coli proteome using a combined energetic-and structural-bioinformatics-based approach[J]. J Proteome Res, 2017, 16(2): 470-480. doi: 10.1021/acs.jproteome.6b00624
    [89]
    MARTINEZ MOLINA D, JAFARI R, IGNATUSHCHENKO M, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay[J]. Science, 2013, 341(6141): 84-87. doi: 10.1126/science.1233606
    [90]
    SAVITSKI MM, REINHARD FB, FRANKEN H, et al. Tracking cancer drugs in living cells by thermal profiling of the proteome[J]. Science, 2014, 346(6205): 1255784. doi: 10.1126/science.1255784
    [91]
    BECHER I, WERNER T, DOCE C, et al. Thermal profiling reveals phenylalanine hydroxylase as an off-target of panobinostat[J]. Nat Chem Biol, 2016, 12(11): 908-910. doi: 10.1038/nchembio.2185
    [92]
    MATEUS A, MAATTA TA, SAVITSKI MM. Thermal proteome profiling: Unbiased assessment of protein state through heat-induced stability changes[J]. Proteome Sci, 2016, 15: 13. doi: 10.1186/s12953-017-0122-4
    [93]
    KIRSCH VC, ORGLER C, BRAIG S, et al. The cytotoxic natural product Vioprolide: A targets nucleolar protein 14, which is essential for ribosome biogenesis[J]. Angew Chem Int Ed Engl, 2020, 59(4): 1595-1600. doi: 10.1002/anie.201911158
    [94]
    PENG H, GUO HB, POGOUTSE O, et al. An unbiased chemical proteomics method identifies FabI as the primary target of 6-OH-BDE-47[J]. Environ Sci Technol, 2016, 50(20): 11329-11336. doi: 10.1021/acs.est.6b03541
    [95]
    REINHARD FB, EBERHARD D, WERNER T, et al. Thermal proteome profiling monitors ligand interactions with cellular membrane proteins[J]. Nat Methods, 2015, 12(12): 1129-1131. doi: 10.1038/nmeth.3652
    [96]
    LYU JW, RUAN CF, ZHANG XL, et al. Microparticle-assisted precipitation screening method for robust drug target identification[J]. Anal Chem, 2020, 92(20): 13912-13921. doi: 10.1021/acs.analchem.0c02756
    [97]
    MENG H, MA RZ, FITZGERALD MC. Chemical denaturation and protein precipitation approach for discovery and quantitation of protein-drug interactions[J]. Anal Chem, 2018, 90(15): 9249-9255. doi: 10.1021/acs.analchem.8b01772
    [98]
    ZHANG X, WANG Q, LI Y, et al. Solvent-induced protein precipitation for drug target discovery on the proteomic scale[J]. Anal Chem, 2020, 92(1): 1363-1371. doi: 10.1021/acs.analchem.9b04531
    [99]
    CHERNOBROVKIN A, MARIN-VICENTE C, VISA N, et al. Functional Identification of Target by Expression Proteomics (FITExP) reveals protein targets and highlights mechanisms of action of small molecule drugs[J]. Sci Rep, 2015, 5: 11176. doi: 10.1038/srep11176
    [100]
    SAEI AA, GULLBERG H, SABATIER P, et al. Comprehensive chemical proteomics for target deconvolution of the redox active drug auranofin[J]. Redox Biol, 2020, 32: 101491. doi: 10.1016/j.redox.2020.101491
    [101]
    OHKI Y, SAKURAI H, HOSHINO M, et al. Perturbation-based proteomic correlation profiling as a target deconvolution methodology[J]. Cell Chem Biol, 2019, 26(1): 137-143. doi: 10.1016/j.chembiol.2018.10.012
    [102]
    CHO KF, MA TP, ROSE CM, et al. Chaperone mediated detection of small molecule target binding in cells[J]. Nat Commun, 2020, 11: 465. doi: 10.1038/s41467-019-14033-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (536) PDF downloads(273) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return