Volume 37 Issue 3
May  2021
Turn off MathJax
Article Contents
LIU Dan-chen, ZHOU Fang, ZHANG Jing-wei, WANG Guang-ji. New Insight and New Methodology for Herb-Drug Interactions Based on Cellular Pharmacokinetics[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(3): 325-330. doi: 10.14148/j.issn.1672-0482.2021.0325
Citation: LIU Dan-chen, ZHOU Fang, ZHANG Jing-wei, WANG Guang-ji. New Insight and New Methodology for Herb-Drug Interactions Based on Cellular Pharmacokinetics[J]. Journal of Nanjing University of traditional Chinese Medicine, 2021, 37(3): 325-330. doi: 10.14148/j.issn.1672-0482.2021.0325

New Insight and New Methodology for Herb-Drug Interactions Based on Cellular Pharmacokinetics

doi: 10.14148/j.issn.1672-0482.2021.0325
  • Received Date: 2021-03-20
    Available Online: 2021-12-21
  • Publish Date: 2021-05-10
  • Herb and drug combination has become a common phenomenon on the clinical treatment, but its judgement criteria lacks a complete scientific basis. Traditional pharmacokinetic studies, restricted to plasma drug concentration, cannot clarify drug metabolism and disposition process in the target site, creating limitations such as irrelevant relationship between plasma PK and PD. In recent years, more and more studies focus on quantitative analysis of the process of drugs into the target area and cells through blood, which promotes pharmacokinetic researches from "macro" plasma into "micro" cells. Therefore, this paper mainly summarizes new technologies, new methods of herb-drug interaction researches based on the thought of cellular pharmacokinetics, as well as studies and clinical applications of herb-drug combination to improve effect and decrease toxicity.

     

  • loading
  • [1]
    PAN LM, LIU JN, HE QJ, et al. MSN-mediated sequential vascular-to-cell nuclear-targeted drug delivery for efficient tumor regression[J]. Adv Mater, 2014, 26(39): 6742-6748. doi: 10.1002/adma.201402752
    [2]
    ALEXANDRAKIS G, BROWN EB, TONG RT, et al. Two-photon fluorescence correlation microscopy reveals the two-phase nature of transport in tumors[J]. Nat Med, 2004, 10(2): 203-207. doi: 10.1038/nm981
    [3]
    TOZER GM, AMEER-BEG SM, BAKER J, et al. Intravital imaging of tumour vascular networks using multi-photon fluorescence microscopy[J]. Adv Drug Deliv Rev, 2005, 57(1): 135-152. doi: 10.1016/j.addr.2004.07.015
    [4]
    ZHOU K, ZHANG JW, WANG QZ, et al. Apatinib, a selective VEGFR2 inhibitor, improves the delivery of chemotherapeutic agents to tumors by normalizing tumor vessels in LoVo colon cancer xenograft mice[J]. Acta Pharmacol Sin, 2019, 40(4): 556-562. doi: 10.1038/s41401-018-0058-y
    [5]
    LIU WY, ZHANG JW, YAO XQ, et al. Bevacizumab-enhanced antitumor effect of 5-fluorouracil via upregulation of thymidine phosphorylase through vascular endothelial growth factor A/vascular endothelial growth factor receptor 2-specificity protein 1 pathway[J]. Cancer Sci, 2018, 109(10): 3294-3304. doi: 10.1111/cas.13779
    [6]
    HONKURA N, RICHARDS M, LAVIÑA B, et al. Intravital imaging-based analysis tools for vessel identification and assessment of concurrent dynamic vascular events[J]. Nat Commun, 2018, 9(1): 2746. doi: 10.1038/s41467-018-04929-8
    [7]
    BOCHNER F, MOHAN V, ZINGER A, et al. Intravital imaging of vascular anomalies and extracellular matrix remodeling in orthotopic pancreatic tumors[J]. Int J Cancer, 2020, 146(8): 2209-2217. doi: 10.1002/ijc.32759
    [8]
    GAUSTAD JV, SIMONSEN TG, HANSEM LMK, et al. Intravital microscopy of tumor vessel morphology and function using a standard fluorescence microscope[J/OL]. Eur J Nucl Med Mol Imag, 2021: 1-12. https://link.springer.com/article/10.1007/s00259-021-05243-0.
    [9]
    DE BRUIJN HS, MASHAYEKHI V, SCHREURS TJL, et al. Acute cellular and vascular responses to photodynamic therapy using EGFR-targeted nanobody-photosensitizer conjugates studied with intravital optical imaging and magnetic resonance imaging[J]. Theranostics, 2020, 10(5): 2436-2452. doi: 10.7150/thno.37949
    [10]
    VAN DUINEN V, VAN DEN HEUVEL A, TRIETSCH SJ, et al. 96 perfusable blood vessels to study vascular permeability in vitro[J]. Sci Rep, 2017, 7(1): 18071. doi: 10.1038/s41598-017-14716-y
    [11]
    POUSSIN C, KRAMER B, LANZ HL, et al. 3D human microvessel-on-a-chip model for studying monocyte-to-endothelium adhesion under flow - application in systems toxicology[J]. ALTEX, 2020, 37(1): 47-63. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_PM31445503
    [12]
    OH S, RYU H, TAHK D, et al. "Open-top" microfluidic device for in vitro three-dimensional capillary beds[J]. Lab Chip, 2017, 17(20): 3405-3414. doi: 10.1039/C7LC00646B
    [13]
    WU JS, HU YF, XIANG L, et al. San-Huang-Xie-Xin-Tang constituents exert drug-drug interaction of mutual reinforcement at both pharmacodynamics and pharmacokinetic level: A review[J]. Front Pharmacol, 2016, 7: 448. http://www.tandfonline.com/servlet/linkout?suffix=CIT0114&dbid=8&doi=10.1080%2F03602532.2017.1417424&key=27965575
    [14]
    HICKS KO, OHMS SJ, VAN ZIJL PL, et al. An experimental and mathematical model for the extravascular transport of a DNA intercalator in tumours[J]. Br J Cancer, 1997, 76(7): 894-903. doi: 10.1038/bjc.1997.481
    [15]
    SHIELD K, ACKLAND ML, AHMED N, et al. Multicellular spheroids in ovarian cancer metastases: Biology and pathology[J]. Gynecol Oncol, 2009, 113(1): 143-148. doi: 10.1016/j.ygyno.2008.11.032
    [16]
    LU M, ZHOU F, HAO K, et al. Alternation of adriamycin penetration kinetics in MCF-7 cells from 2D to 3D culture based on P-gp expression through the Chk2/p53/NF-κB pathway[J]. Biochem Pharmacol, 2015, 93(2): 210-220. doi: 10.1016/j.bcp.2014.11.010
    [17]
    WANG WJ, CAI QY, ZHOU F, et al. Impaired pentose phosphate pathway in the development of 3D MCF-7 cells mediated intracellular redox disturbance and multi-cellular resistance without drug induction[J]. Redox Biol, 2018, 15: 253-265. doi: 10.1016/j.redox.2017.12.009
    [18]
    LIU JL, YAN FR, CHEN HZ, et al. A novel individual-cell-based mathematical model based on multicellular tumour spheroids for evaluating doxorubicin-related delivery in avascular regions[J]. Br J Pharmacol, 2017, 174(17): 2862-2879. doi: 10.1111/bph.13909
    [19]
    DARRIGUES E, NI MA, NEDOSEKIN DA, et al. Tracking gold nanorods' interaction with large 3D pancreatic-stromal tumor spheroids by multimodal imaging: Fluorescence, photoacoustic, and photothermal microscopies[J]. Sci Rep, 2020, 10(1): 3362. doi: 10.1038/s41598-020-59226-6
    [20]
    WENZEL T, CARVAJAL BERRIO DA, DAUM R, et al. Molecular effects and tissue penetration depth of physical plasma in human mucosa analyzed by contact- and marker-independent Raman microspectroscopy[J]. ACS Appl Mater Interf, 2019, 11(46): 42885-42895. doi: 10.1021/acsami.9b13221
    [21]
    AZAGURY A, KHOURY L, ADATO Y, et al. The synergistic effect of ultrasound and chemical penetration enhancers on chorioamnion mass transport[J]. J Contr Rel, 2015, 200: 35-41. doi: 10.1016/j.jconrel.2014.12.025
    [22]
    ZHOU F, ZHANG J, LI P, et al. Toward a new age of cellular pharmacokinetics in drug discovery[J]. Drug Metab Rev, 2011, 43(3): 335-345. doi: 10.3109/03602532.2011.560607
    [23]
    STEINHAUSER ML, LECHENE CP. Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry[J]. Semin Cell Dev Biol, 2013, 24(8/9): 661-667. http://www.onacademic.com/detail/journal_1000036195376610_40ff.html
    [24]
    ZHANG JW, ZHOU F, WU XL, et al. Cellular pharmacokinetic mechanisms of adriamycin resistance and its modulation by 20(S)-ginsenoside Rh2 in MCF-7/Adr cells[J]. Br J Pharmacol, 2012, 165(1): 120-134. doi: 10.1111/j.1476-5381.2011.01505.x
    [25]
    ZHANG J, LU M, ZHOU F, et al. Key role of nuclear factor-kappaB in the cellular pharmacokinetics of adriamycin in MCF-7/Adr cells: the potential mechanism for synergy with 20(S)-ginsenoside Rh2[J]. Drug Metab Dispos, 2012, 40(10): 1900-1908. doi: 10.1124/dmd.112.045187
    [26]
    ZHOU F, HAO G, ZHANG JW, et al. Protective effect of 23-hydroxybetulinic acid on doxorubicin-induced cardiotoxicity: A correlation with the inhibition of carbonyl reductase-mediated metabolism[J]. Br J Pharmacol, 2015, 172(23): 5690-5703. doi: 10.1111/bph.12995
    [27]
    ZANG XJ, WANG GJ, CAI QY, et al. A promising microtubule inhibitor deoxypodophyllotoxin exhibits better efficacy to multidrug-resistant breast cancer than paclitaxel via avoiding efflux transport[J]. Drug Metab Dispos, 2018, 46(5): 542-551. doi: 10.1124/dmd.117.079442
    [28]
    DUENAS ME, ESSNER JJ, LEE YJ. 3D MALDI mass spectrometry imaging of a single cell: spatial mapping of lipids in the embryonic development of zebrafish[J]. Sci Rep, 2017, 7(1): 14946. doi: 10.1038/s41598-017-14949-x
    [29]
    PASSARELLI MK, PIRKL A, MOELLERS R, et al. The 3D OrbiSIMS-label-free metabolic imaging with subcellular lateral resolution and high mass-resolving power[J]. Nat Methods, 2017, 14(12): 1175-1183. doi: 10.1038/nmeth.4504
    [30]
    YIN Z, CHENG X, LIU R, et al. Chemical and topographical single-cell imaging by near-field desorption mass spectrometry[J]. Angew Chem Int Ed Engl, 2019, 58(14): 4541-4546. doi: 10.1002/anie.201813744
    [31]
    CHENG XL, YIN ZB, RONG L, et al. Subcellular chemical imaging of structurally similar acridine drugs by near-field laser desorption/laser postionization mass spectrometry[J]. Nano Res, 2020, 13(3): 745-751. doi: 10.1007/s12274-020-2686-z
    [32]
    THOMEN A, NAJAFINOBAR N, PENEN F, et al. Subcellular mass spectrometry imaging and absolute quantitative analysis across organelles[J]. ACS Nano, 2020, 14(4): 4316-4325. doi: 10.1021/acsnano.9b09804
    [33]
    GORMAN BL, BRUNET MA, PHAM SN, et al. Measurement of absolute concentration at the subcellular scale[J]. ACS Nano, 2020, 14(6): 6414-6419. doi: 10.1021/acsnano.0c04285
    [34]
    SIMON T, GAGLIANO T, GIAMAS G. Direct effects of anti-angiogenic therapies on tumor cells: VEGF signaling[J]. Trends Mol Med, 2017, 23(3): 282-292. doi: 10.1016/j.molmed.2017.01.002
    [35]
    VIALLARD C, LARRIVÉE B. Tumor angiogenesis and vascular normalization: Alternative therapeutic targets[J]. Angiogenesis, 2017, 20(4): 409-426. doi: 10.1007/s10456-017-9562-9
    [36]
    BISHOP-BAILEY D. Tumour vascularisation: A druggable target[J]. Curr Opin Pharmacol, 2009, 9(2): 96-101. doi: 10.1016/j.coph.2008.10.004
    [37]
    杨红, 周鸿飞. 活血化瘀法中药汤剂对脑梗死患者认知功能以及血液动力学的意义分析[J]. 中国现代药物应用, 2021, 15(5): 222-225. https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYY202105092.htm
    [38]
    CHAN SS, JONES RL, LIN G. Synergistic interaction between theLigusticum chuanxiong constituent butylidenephthalide and the nitric oxide donor sodium nitroprusside in relaxing rat isolated aorta[J]. J Ethnopharmacol, 2009, 122(2): 308-312. doi: 10.1016/j.jep.2009.01.002
    [39]
    赵鸣祥. 中西药联用治疗急性脑梗死54例[J]. 江苏中医药, 2009, 41(12): 38. doi: 10.3969/j.issn.1672-397X.2009.12.025
    [40]
    ZHONG CJ, JIANG C, NI SY, et al. Identification of bioactive anti-angiogenic components targeting tumor endothelial cells in Shenmai injection using multidimensional pharmacokinetics[J]. Acta Pharm Sin B, 2020, 10(9): 1694-1708. doi: 10.1016/j.apsb.2019.12.011
    [41]
    CHENG LG, LIU WY, ZHONG CJ, et al. Remodeling the homeostasis of pro- and anti-angiogenic factors by Shenmai injection to normalize tumor vasculature for enhanced cancer chemotherapy[J]. J Ethnopharmacol, 2021, 270: 113770. doi: 10.1016/j.jep.2020.113770
    [42]
    LI JJ, WU YH, WANG D, et al. Oridonin synergistically enhances the anti-tumor efficacy of doxorubicin against aggressive breast cancer via pro-apoptotic and anti-angiogenic effects[J]. Pharmacol Res, 2019, 146: 104313. doi: 10.1016/j.phrs.2019.104313
    [43]
    SHI JF, LI JJ, LI JX, et al. Synergistic breast cancer suppression efficacy of doxorubicin by combination with glycyrrhetinic acid as an angiogenesis inhibitor[J]. Phytomedicine, 2021, 81: 153408. doi: 10.1016/j.phymed.2020.153408
    [44]
    MINCHINTON AI, TANNOCK IF. Drug penetration in solid tumours[J]. Nat Rev Cancer, 2006, 6(8): 583-592. doi: 10.1038/nrc1893
    [45]
    SUN Y. Tumor microenvironment and cancer therapy resistance[J]. Cancer Lett, 2016, 380(1): 205-215. doi: 10.1016/j.canlet.2015.07.044
    [46]
    PARK CR, LEE JS, SON CG, et al. A survey of herbal medicines as tumor microenvironment-modulating agents[J]. Phytother Res, 2021, 35(1): 78-94. doi: 10.1002/ptr.6784
    [47]
    周航, 邓海滨. 中医药调控肿瘤微环境的研究进展[J]. 世界中医药, 2014, 9(11): 1549-1553. doi: 10.3969/j.issn.1673-7202.2014.11.040
    [48]
    GUO J, ZENG HT, CHEN Y. Emerging nano drug delivery systems targeting cancer-associated fibroblasts for improved antitumor effect and tumor drug penetration[J]. Mol Pharm, 2020, 17(4): 1028-1048. doi: 10.1021/acs.molpharmaceut.0c00014
    [49]
    HU KL, MIAO L, GOODWIN TJ, et al. Quercetin remodels the tumor microenvironment to improve the permeation, retention, and antitumor effects of nanoparticles[J]. ACS Nano, 2017, 11(5): 4916-4925. doi: 10.1021/acsnano.7b01522
    [50]
    WANG MZ, HE X, YU Z, et al. A nano drug delivery system based on Angelica sinensis polysaccharide for combination of chemotherapy and immunotherapy[J]. Molecules, 2020, 25(13): E3096. doi: 10.3390/molecules25133096
    [51]
    LIU J, CAI Q, WANG W, et al. Ginsenoside Rh2 pretreatment and withdrawal reactivated the pentose phosphate pathway to ameliorate intracellular redox disturbance and promoted intratumoral penetration of adriamycin[J]. Redox Biol, 2020, 32: 101452. doi: 10.1016/j.redox.2020.101452
    [52]
    LIU CX, YI XL, SI DY, et al. Herb-drug interactions involving drug metabolizing enzymes and transporters[J]. Curr Drug Metab, 2011, 12(9): 835-849. doi: 10.2174/138920011797470083
    [53]
    TARIRAI C, VILJOEN AM, HAMMAN JH. Herb-drug pharmacokinetic interactions reviewed[J]. Exp Opin Drug Metab Toxicol, 2010, 6(12): 1515-1538. doi: 10.1517/17425255.2010.529129
    [54]
    LIU WY, ZHANG JW, YAO XQ, et al. Shenmai injection enhances the cytotoxicity of chemotherapeutic drugs against colorectal cancers via improving their subcellular distribution[J]. Acta Pharmacol Sin, 2017, 38(2): 264-276. doi: 10.1038/aps.2016.99
    [55]
    SUN XY, XU X, CHEN YF, et al. Danggui buxue decoction sensitizes the response of non-small-cell lung cancer to gemcitabine via regulating deoxycytidine kinase and P-glycoprotein[J]. Molecules, 2019, 24(10): E2011. doi: 10.3390/molecules24102011
    [56]
    CHEN C, AI QD, WEI YH. Kanglaite enhances the efficacy of cisplatin in suppression of hepatocellular carcinoma via inhibiting CKLF1 mediated NF-κB pathway and regulating transporter mediated drug efflux[J]. J Ethnopharmacol, 2021, 264: 113388. doi: 10.1016/j.jep.2020.113388
    [57]
    ZHANG JW, SUN Y, WANG YY, et al. Non-antibiotic agent ginsenoside 20(S)-Rh2 enhanced the antibacterial effects of ciprofloxacin in vitro and in vivo as a potential NorA inhibitor[J]. Eur J Pharmacol, 2014, 740: 277-284. doi: 10.1016/j.ejphar.2014.07.020
    [58]
    XIE B, LU YY, LUO ZH, et al. Tenacigenin B ester derivatives from Marsdenia tenacissima actively inhibited CYP3A4 and enhanced in vivo antitumor activity of paclitaxel[J]. J Ethnopharmacol, 2019, 235: 309-319. doi: 10.1016/j.jep.2019.02.028
    [59]
    ZHANG XQ, DING YW, CHEN JJ, et al. Xiaoaiping injection enhances paclitaxel efficacy in ovarian cancer via pregnane X receptor and its downstream molecules[J]. J Ethnopharmacol, 2020, 261: 113067. doi: 10.1016/j.jep.2020.113067
    [60]
    WANG XP, LI C, WANG QY, et al. Tanshinone ⅡA restores dynamic balance of autophagosome/autolysosome in doxorubicin-induced cardiotoxicity via targeting Beclin1/LAMP1[J]. Cancers, 2019, 11(7): E910. doi: 10.3390/cancers11070910
    [61]
    FENG DD, TANG T, FAN R, et al. Gancao (Glycyrrhizae Radix) provides the main contribution to Shaoyao-Gancao decoction on enhancements of CYP3A4 and MDR1 expression via pregnane X receptor pathway in vitro[J]. BMC Complement Altern Med, 2018, 18(1): 345. doi: 10.1186/s12906-018-2402-7
    [62]
    FASINU PS, RAPP GK. Herbal interaction with chemotherapeutic drugs: A focus on clinically significant findings[J]. Front Oncol, 2019, 9: 1356. doi: 10.3389/fonc.2019.01356
    [63]
    MALATI CY, ROBERTSON SM, HUNT JD, et al. Influence of Panax ginseng on cytochrome P450 (CYP)3A and P-glycoprotein (P-gp) activity in healthy participants[J]. J Clin Pharmacol, 2012, 52(6): 932-939. doi: 10.1177/0091270011407194
    [64]
    赫记超, 周芳, 张经纬, 等. 中西药相互作用的药代动力学机制研究进展[J]. 中国临床药理学与治疗学, 2014, 19(4): 470-476. https://www.cnki.com.cn/Article/CJFDTOTAL-YLZL201404026.htm
    [65]
    CHEN YZ, LI ZD, GAO F, et al. Effects of combined Chinese drugs and chemotherapy in treating advanced non-small cell lung cancer[J]. Chin J Integr Med, 2009, 15(6): 415-419. doi: 10.1007/s11655-009-0415-2
    [66]
    王建成. 中药注射剂联合化疗治疗胃癌的网状Meta分析[D]. 兰州: 兰州大学, 2014.
    [67]
    HUANG X, WANG J, LIN W, et al. Kanglaite injection plus platinum-based chemotherapy for stage Ⅲ/Ⅳ non-small cell lung cancer: A meta-analysis of 27 RCTs[J]. Phytomedicine, 2020, 67: 153154. doi: 10.1016/j.phymed.2019.153154
    [68]
    CHOW C, CHEN HY. Clinical efficacy of traditional Chinese medicine as a concomitant therapy for nasopharyngeal carcinoma: A systematic review and meta-analysis[J]. Cancer Invest, 2009, 27(3): 334-344. doi: 10.1080/07357900802392683
    [69]
    FU F, WAN YD, MULA TI, et al. Kanglaite injection combined with hepatic arterial intervention for unresectable hepatocellular carcinoma: A meta-analysis[J]. J Cancer Res Ther, 2014, 10(S1): 38-41. http://www.ncbi.nlm.nih.gov/pubmed/25207889
    [70]
    LAM CS, CHENG LP, ZHOU LM, et al. Herb-drug interactions between the medicinal mushrooms Lingzhi and Yunzhi and cytotoxic anticancer drugs: A systematic review[J]. Chin Med, 2020, 15: 75. doi: 10.1186/s13020-020-00356-4
    [71]
    WANG W, LIAO QP, QUAN LH, et al. The effect ofAcorus gramineus on the bioavailabilities and brain concentrations of ginsenosides Rg1, Re and Rb1 after oral administration of Kai-Xin-San preparations in rats[J]. J Ethnopharmacol, 2010, 131(2): 313-320. doi: 10.1016/j.jep.2010.06.034
    [72]
    KANG A, HAO HP, ZHENG X, et al. Peripheral anti-inflammatory effects explain the ginsenosides paradox between poor brain distribution and anti-depression efficacy[J]. J Neuroinflammation, 2011, 8: 100. doi: 10.1186/1742-2094-8-100
    [73]
    倪苹, 张经纬, 刘嘉莉, 等. 细胞药代动力学研究进展[J]. 药学进展, 2014, 38(12): 881-885. https://www.cnki.com.cn/Article/CJFDTOTAL-YXJZ201412003.htm
    [74]
    AWORTWE C, MAKIWANE M, REUTER H, et al. Critical evaluation of causality assessment of herb-drug interactions in patients[J]. Br J Clin Pharmacol, 2018, 84(4): 679-693. doi: 10.1111/bcp.13490
    [75]
    刘昌孝. 对中药现代化及中药国际化发展的思考[J]. 中国药房, 2016, 27(11): 1441-1444. doi: 10.6039/j.issn.1001-0408.2016.11.01
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (229) PDF downloads(199) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return