留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于“肺-肠”轴探讨肺、肠微生态对肺部疾病的影响

时晨 林丽丽 谢彤 沈存思 纪建建 赵霞 汪受传 单进军

时晨, 林丽丽, 谢彤, 沈存思, 纪建建, 赵霞, 汪受传, 单进军. 基于“肺-肠”轴探讨肺、肠微生态对肺部疾病的影响[J]. 南京中医药大学学报, 2020, 36(2): 168-173.
引用本文: 时晨, 林丽丽, 谢彤, 沈存思, 纪建建, 赵霞, 汪受传, 单进军. 基于“肺-肠”轴探讨肺、肠微生态对肺部疾病的影响[J]. 南京中医药大学学报, 2020, 36(2): 168-173.
SHI Chen, LIN Li-li, XIE Tong, SHEN Cun-si, JI Jian-jian, ZHAO Xia, WANG Shou-chuan, SHAN Jin-jun. The Role of the Lung-Gut Axis and the Lung and Gut Microorganism in Pulmonary Disease[J]. Journal of Nanjing University of traditional Chinese Medicine, 2020, 36(2): 168-173.
Citation: SHI Chen, LIN Li-li, XIE Tong, SHEN Cun-si, JI Jian-jian, ZHAO Xia, WANG Shou-chuan, SHAN Jin-jun. The Role of the Lung-Gut Axis and the Lung and Gut Microorganism in Pulmonary Disease[J]. Journal of Nanjing University of traditional Chinese Medicine, 2020, 36(2): 168-173.

基于“肺-肠”轴探讨肺、肠微生态对肺部疾病的影响

The Role of the Lung-Gut Axis and the Lung and Gut Microorganism in Pulmonary Disease

  • 摘要: 近年来,随着生命科学尤其是微生物组学研究的突破,诞生了“肺-肠”轴这一全新概念,其在某种程度上与中医“肺与大肠相表里”理论不谋而合。针对新型冠状病毒肺炎,国家卫生健康委员会发布的诊疗方案中明确提出可使用肠道微生态调节剂,维持肠道微生态平衡,预防继发细菌感染。越来越多的研究表明,肺、肠道微生物稳态对肺部疾病发挥着重要作用,某些特定菌属及其代谢产物可参与肺部疾病进程,影响其发生发展;然而,肺、肠道微生物组成极为复杂,其免疫调节、抗炎、抗感染等作用机制尚未完全明确。该文就“肺-肠”轴及肺、肠微生态对肺部疾病影响的研究进展并结合课题组的前期研究进行了综述和展望。

     

  • [1] 新型冠状病毒感染的肺炎诊疗方案(试行第五版)[EB/OL].(2020-02-04)[2020-02-12].http://www.gov.cn/zhengce/zhengceku/2020-02/05/5474791/files/de44557832ad4be1929091dcbcfca891.pdf
    [2] 莫芳芳, 马师雷, 李鸿涛, 等. 基于中医古籍研究的“肺与大肠相表里”理论源流及其内涵探讨[J]. 环球中医药, 2015, 8(2): 165-168.
    [3] RUTTEN EPA, LENAERTS K, BUURMAN WA, et al. Disturbed intestinal integrity in patients with COPD: Effects of activities of daily living[J]. Eur Respir J,2014, 145(2): 245-252.
    [4] ROUSSOS A, KOURSARAKOS P, PATSOPOULOS D, et al. Increased prevalence of irritable bowel syndrome in patients with bronchial asthma[J]. Respir Med, 2003, 97(1): 75-79.
    [5] 〖JP2〗LLOYD-PRICE J, ABU-ALI G, HUTTENHOWER C, et al. The healthy human microbiome[J]. Genome Med, 2016, 8(1): 1-11.〖JP〗
    [6] MORGAN XC, SEGATA N, HUTTENHOWER C, et al. Biodiversity and functional genomics in the human microbiome[J]. Trends Genet, 2013, 29(1): 51-58.
    [7] HARTSTRA AV, BOUTER KE, BACKHED F, et al. Insights into the role of the microbiome in obesity and type 2 diabetes[J]. Diabetes Care, 2015, 38(1): 159-165.
    [8] SUBRAMANIAN S, BLANTON LV, FRESE SA, et al. Cultivating healthy growth and nutrition through the gut microbiota[J]. Cell, 2015, 161(1): 36-48.
    [9] RAUTAVA S, LUOTO R, SALMINEN S, et al. Microbial contact during pregnancy, intestinal colonization and human disease[J]. Nat Rev Gastroenterol Hepatol, 2012, 9(10): 565.
    [10] GILL SR, POP M, DEBOY RT, et al. Metagenomic analysis of the human distal gut microbiome[J]. Science, 2006, 312(5778): 1355-1359.
    [11] TREMAROLI V, BACKHED F. Functional interactions between the gut microbiota and host metabolism[J]. Nature, 2012, 489(7415): 242-249.
    [12] WILSON I, NICHOLSON J. The role of gut microbiota in drug response[J]. Curr Pharm Des, 2009, 15(13): 1519-1523.
    [13] EKMEKCIU I, VON KLITZING E, FIEBIGER U, et al. Immune responses to broad-spectrum antibiotic treatment and fecal microbiota transplantation in mice[J]. Front Immunol, 2017, 8:397.
    [14] ABRAHAMSSON T, JAKOBSSON H, ANDERSSON AF, et al. Low gut microbiota diversity in early infancy precedes asthma at school age[J]. Clin Exp Allergy, 2014, 44(6): 842-850.
    [15] METSALA J, LUNDQVIST A, VIRTA L, et al. Prenatal and post-natal exposure to antibiotics and risk of asthma in childhood[J]. Clin Exp Allergy, 2015, 45(1): 137-145.
    [16] GREENHALGH K, MEYER KM, AAGAARD KM, et al. The human gut microbiome in health: establishment and resilience of microbiota over a lifetime[J]. Environ Microbiol, 2016, 18(7): 2103-2116.
    [17] DICKSON RP, ERB-DOWNWARD JR, MARTINEZ FJ, et al. The microbiome and the respiratory tract[J]. Annu Rev Physiol, 2016, 78:481-504.
    [18] PATTARONI C, WATZENBOECK ML, SCHNEIDEGGER S, et al. Early-life formation of the microbial and immunological environment of the human airways[J]. Cell Host Microb, 2018, 24(6): 857-865.
    [19] GOLLWITZER ES, MARSLAND BJ. Impact of early-life exposures on immune maturation and susceptibility to disease[J]. Trends Immunol, 2015, 36(11): 684-696.
    [20] UBAGS ND, MARSLAND BJ. Mechanistic insight into the function of the microbiome in lung diseases[J]. Eur Respir J, 2017, 50(3): 1602467.
    [21] 〖JP2〗YANG X, LI H, MA Q, et al. Neutrophilic asthma is associated with increased airway bacterial burden and disordered community composition[J]. BioMed Res Inter, 2018, 2018:1-11.〖JP〗
    [22] GREEN BJ, WIRIYACHAIPORN S, GRAINGE C, et al. Potentially pathogenic airway bacteria and neutrophilic inflammation in treatment resistant severe asthma[J]. PLoS ONE, 2014, 9(6):e100645.
    [23] SIMPSON JL, DALY J, BAINES KJ, et al. Airway dysbiosis: Haemophilus influenzae and Tropheryma in poorly controlled asthma[J]. Eur Respir J, 2016, 47(3): 792-800.
    [24] PROCTOR DM, RELMAN DAJ. The landscape ecology and microbiota of the human nose, mouth, and throat[J]. Cell Host Microbe, 2017, 21(4): 421-432.
    [25] PABST O. New concepts in the generation and functions of IgA[J]. Nat Rev Immunol, 2012, 12(12): 821-832.
    [26] BUNKER JJ, ERICKSON SA, FLYNN TM, et al. Natural polyreactive IgA antibodies coat the intestinal microbiota[J]. Science, 2017, 358(6361): 6619.
    [27] SALZMAN NH, HUNG K, HARIBHAI D, et al. Enteric defensins are essential regulators of intestinal microbial ecology[J]. Nat Immunol, 2010, 11(1): 76.
    [28] MAMANTOPOULOS M, RONCHI F, VAN HAUWERMEIREN F, et al. Nlrp6-and ASC-dependent inflammasomes do not shape the commensal gut microbiota composition[J]. Immunity, 2017, 47(2): 339-348.
    [29] ZMORA N, ZILBERMAN-SCHAPIRA G, SUEZ J, et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features[J]. Cell, 2018, 174(6): 1388-1405.
    [30] GROVES HT, CUTHBERTSON L, JAMES P, et al. Respiratory disease following viral lung infection alters the murine gut microbiota[J]. Front Immunol, 2018, 9:182.
    [31] WYPYCH TP, MARSLAND BJ. Antibiotics as instigators of microbial dysbiosis: Implications for asthma and allergy[J]. Trends Immunol, 2018, 39(9): 697-711.
    [32] 〖JP2〗HANSKI I, VON HERTZEN L, FYHRQUIST N, et al. Environmental biodiversity, human microbiota, and allergy are interrelated[J]. P Natl Acad Sci USA, 2012, 109(21): 8334-8339.〖JP〗
    [33] 〖JP2〗FUJIMURA KE, SITARIK AR, HAVSTAD S, et al. Neonatal gut microbiota associates with childhood multisensitized atopy and T cell differentiation[J]. Nat Med, 2016, 22(10): 1187.〖JP〗
    [34] WANG J, LI F, WEI H, et al. Respiratory influenza virus infection induces intestinal immune injury via microbiota-mediated Th17 cell-dependent inflammation[J]. J Exp Med, 2014, 211(12): 2397-2410.
    [35] WANG H, LIU JS, PENG SH, et al. Gut-lung crosstalk in pulmonary involvement with inflammatory bowel diseases[J]. World J Gastroenterol, 2013, 19(40): 6794.
    [36] ZHANG H, KANG ZJ, GONG HY, et al. The digestive system is a potential route of 2019-nCov infection: A bioinformatics analysis based on single-cell transcriptomes[J/OL]. BioRxiv.https://doi.org/10.1101/2020.01.30.927806.
    [37] NEISH AS, GEWIRTZ AT, ZENG H, et al. Prokaryotic regulation of epithelial responses by inhibition of IκB-α ubiquitination[J]. Science, 2000, 289(5484): 1560-1563.
    [38] RATNER AJ, LYSENKO ES, PAUL MN, et al. Synergistic proinflammatory responses induced by polymicrobial colonization of epithelial surfaces[J]. P Natl Acad Sci USA, 2005, 102(9): 3429-3434.
    [39] TROMPETTE A, GOLLWITZER ES, YADAVA K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis[J]. Nat Med, 2014, 20(2): 159.
    [40] DICKSON RP, SINGER BH, NEWSTEAD MW, et al. Enrichment of the lung microbiome with gut bacteria in sepsis and the acute respiratory distress syndrome[J]. Nat Microbiol, 2016, 1(10): 1-9.
    [41] GAUGUET S, D'ORTONA S, AHNGER-PIER K, et al. Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia[J]. Infect Immun, 2015, 83(10): 4003-4014.
    [42] SEGAL LN, CLEMENTE JC, TSAY JCJ, et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype[J]. Nat Microbiol, 2016, 1(5): 16031.
    [43] SAMUELSON DR, WELSH DA, SHELLITO JE. Regulation of lung immunity and host defense by the intestinal microbiota[J]. Front Microbiol, 2015, 6:1085.
    [44] REIBMAN J, MARMOR M, FILNER J, et al. Asthma is inversely associated with Helicobacter pylori <\i>status in an urban population[J]. PLoS ONE, 2008, 3(12): e4060.
    [45] HUANG Y, MAO K, CHEN X, et al. S1P-dependent interorgan trafficking of group 2 innate lymphoid cells supports host defense[J]. Science, 2018, 359(6371): 114-119.
    [46] BRADLEY CP, TENG F, FELIX KM, et al. Segmented filamentous bacteria provoke lung autoimmunity by inducing gut-lung axis Th17 cells expressing dual TCRs[J]. Cell Host Microbes, 2017, 22(5): 697-704.
    [47] ICHINOHE T, PANG IK, KUMAMOTO Y, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection[J]. P Natl Acad Sci USA, 2011, 108(13): 5354-5359.
    [48] QIAN G, JIANG W, ZOU B, et al. LPS inactivation by a host lipase allows lung epithelial cell sensitization for allergic asthma[J]. J Exp Med, 2018, 215(9): 2397-2412.
    [49] DEN BESTEN G, VAN EUNEN K, GROEN AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism[J]. J Lipid Res, 2013, 54(9): 2325-2340.
    [50] THORBURN AN, MCKENZIE CI, SHEN S, et al. Evidence that asthma is a developmental origin disease influenced by maternal diet and bacterial metabolites[J]. Nat Commun, 2015, 6(1): 1-13.
    [51] TROMPETTE A, GOLLWITZER ES, PATTARONI C, et al. Dietary fiber confers protection against flu by shaping Ly6c-patrolling monocyte hematopoiesis and CD8+ T cell metabolism[J]. Immunity, 2018, 48(5): 992-1005.
    [52] HUSTED AS, TRAUELSEN M, RUDENKO O, et al. GPCR-mediated signaling of metabolites[J]. Cell Metab, 2017, 25(4): 777-796.
    [53] 〖JP2〗STEED AL, CHRISTOPHI GP, KAIKO GE, et al. The microbial metabolite desaminotyrosine protects from influenza through type Ⅰ interferon[J]. Science, 2017, 357(6350): 498-502.〖JP〗
    [54] ZELANTE T, IANNITTI RG, CUNHA C, et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22[J]. Immunity, 2013, 39(2): 372-385.
    [55] SINGH N, GURAV A, SIVAPRAKASAM S, et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis[J]. Immunity, 2014, 40(1): 128-139.
    [56] GEIGER R, RIECKMANN JC, WOLF T, et al. L-arginine modulates T cell metabolism and enhances survival and anti-tumor activity[J]. Max Planck Soc, 2016, 167(3): 829-842.
    [57] SINGH R, CHANDRASHEKHARAPPA S, BODDULURI SR, et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway[J]. Nat Commun, 2019, 10(1): 1-18.
    [58] MORITA N, UMEMOTO E, FUJITA S, et al. GPR31-dependent dendrite protrusion of intestinal CX3CR1+ cells by bacterial metabolites[J]. Nature, 2019, 566(7742): 110-114.
    [59] 孟欣,汪受传,单进军,等. 合胞病毒肺部感染对小鼠大肠黏膜组织内源性代谢物的影响[J]. 中国当代儿科杂志, 2016, 18(11): 1166-1173.
    [60] 钱文娟. “银翘”药对治疗H1N1肺炎的肺-肠轴相关代谢组学研究[D]. 南京:南京中医药大学,2019.
    [61] PLANTINGA TS, JOHNSON MD, SCOTT WK, et al. Human genetic susceptibility to Candida infections[J]. Med Mycol, 2012, 50(8): 785-794.
    [62] FYHRQUIST N, RUOKOLAINEN L, SUOMALAINEN A, et al. Acinetobacter species in the skin microbiota protect against allergic sensitization and inflammation[J]. J Allergy Clin Immunol, 2014, 134(6): 1301-1309.
    [63] NEMBRINI C, SICHELSTIEL A, KISIELOW J, et al. Bacterial-induced protection against allergic inflammation through a multicomponent immunoregulatory mechanism[J]. Thorax, 2011, 66(9): 755-763.
    [64] VOGEL K, BLUMER N, KORTHALS M, et al. Animal shed Bacillus licheniformis spores possess allergy-protective as well as inflammatory properties[J]. J Allergy Clin Immunol Immunopathol, 2008, 122(2): 307-312.
    [65] KOCH KN, HARTUNG ML, URBAN S, et al. Helicobacter urease-induced activation of the TLR2/NLRP3/IL-18 axis protects against asthma[J]. J Clin Investig, 2015, 125(8): 3297-3302.
    [66] BROWN RL, SEQUEIRA RP, CLARKE TB. The microbiota protects against respiratory infection via GM-CSF signaling[J]. Nat Commun, 2017, 8(1): 1-11.
    [67] KANMANI P, CLUA P, VIZOSO-PINTO MG, et al. Respiratory commensal bacteria Corynebacterium pseudodiphtheriticum improves resistance of infant mice to respiratory syncytial virus and Streptococcus pneumoniae superinfection[J]. Front Microbiol, 2017, 8:1613.
    [68] CHUA HH, CHOU HC, TUNG YL, et al. Intestinal dysbiosis featuring abundance of Ruminococcus gnavus associates with allergic diseases in infants[J]. Gastroenterology, 2018, 154(1): 154-167.
    [69] NOVERR MC, FALKOWSKI NR, MCDONALD RA, et al. Development of allergic airway disease in mice following antibiotic therapy and fungal microbiota increase: role of host genetics, antigen, and interleukin-13[J]. Infect Immun, 2005, 73(1): 30-38.
    [70] NOVERR MC, NOGGLE RM, TOEWS GB, et al. Role of antibiotics and fungal microbiota in driving pulmonary allergic responses[J]. Infect Immun, 2004, 72(9): 4996-5003.
  • 加载中
计量
  • 文章访问数:  824
  • HTML全文浏览量:  31
  • PDF下载量:  440
  • 被引次数: 0
出版历程
  • 刊出日期:  2020-03-10

目录

    /

    返回文章
    返回