留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丁香酸调控胆汁酸代谢和肠道屏障改善胆汁淤积肝病的研究

罗欣 成鹏 陆茵 韦忠红

罗欣, 成鹏, 陆茵, 韦忠红. 丁香酸调控胆汁酸代谢和肠道屏障改善胆汁淤积肝病的研究[J]. 南京中医药大学学报, 2024, 40(4): 350-358. doi: 10.14148/j.issn.1672-0482.2024.0350
引用本文: 罗欣, 成鹏, 陆茵, 韦忠红. 丁香酸调控胆汁酸代谢和肠道屏障改善胆汁淤积肝病的研究[J]. 南京中医药大学学报, 2024, 40(4): 350-358. doi: 10.14148/j.issn.1672-0482.2024.0350
LUO Xin, CHENG Peng, LU Yin, WEI Zhonghong. Syringic Acid Improves Cholestatic Liver Disease by Regulating Bile Acid Metabolism and Intestinal Barrier[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(4): 350-358. doi: 10.14148/j.issn.1672-0482.2024.0350
Citation: LUO Xin, CHENG Peng, LU Yin, WEI Zhonghong. Syringic Acid Improves Cholestatic Liver Disease by Regulating Bile Acid Metabolism and Intestinal Barrier[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(4): 350-358. doi: 10.14148/j.issn.1672-0482.2024.0350

丁香酸调控胆汁酸代谢和肠道屏障改善胆汁淤积肝病的研究

doi: 10.14148/j.issn.1672-0482.2024.0350
基金项目: 

国家自然科学基金青年科学基金项目 82004124

江苏省研究生创新项目 KYCX22_2040

详细信息
    作者简介:

    罗欣, 女, 硕士研究生, E-mail: 20210761@njucm.edu.cn

    通讯作者:

    韦忠红, 女, 讲师, 主要从事基于肠道微生物开展中药调控消化系统疾病发生发展的研究, E-mail: wzh1225@njucm.edu.cn

  • 中图分类号: R285.5

Syringic Acid Improves Cholestatic Liver Disease by Regulating Bile Acid Metabolism and Intestinal Barrier

  • 摘要:   目的  基于胆汁酸代谢和肠道屏障探讨丁香酸对胆汁淤积小鼠的调控作用。  方法  20只小鼠随机分为对照组、模型组和丁香酸低、高剂量(70、140 mg·kg-1)组。连续7 d灌胃给予相应药物, 于第5天给药2 h后腹腔注射α-萘异硫氰酸酯(ANIT)诱导肝内胆汁淤积小鼠模型。末次给药后, 记录小鼠体质量及肝质量变化; 检测小鼠血清中肝功能指标、组织病理学变化, qPCR验证小鼠结肠组织中紧密连接蛋白闭锁小带蛋白-1(ZO-1)、闭合蛋白(Occludin)、紧密连接蛋白-5(Claudin-5) mRNA的表达, 采用非靶向代谢组学分析血清中代谢产物的变化, 检测肝脏和粪便中总胆汁酸变化。  结果  丁香酸可以显著降低模型组小鼠血清中丙氨酸氨基转移酶(ALT)、天冬氨酸氨基转移酶(AST)、碱性磷酸酶(ALP)活性和总胆红素(TBIL)、直接胆红素(DBIL)水平(P<0.05,P<0.01), 减轻肝脏损伤和坏死; 降低模型组小鼠结肠的淋巴细胞浸润, 恢复隐窝形态。丁香酸高剂量组能显著升高结肠中ZO-1、Occludin、Claudin-5的mRNA表达水平(P<0.05);显著上调11个代谢物, 下调29个代谢物, 代谢产物主要涉及次生代谢物的生物合成、次级胆汁酸生物合成和胆汁分泌通路。丁香酸降低肝脏中总胆汁酸含量及增加粪便总胆汁酸的排出(P<0.05,P<0.01)。  结论  丁香酸可以显著改善胆汁淤积小鼠肠道屏障的受损, 并且促进胆汁酸的代谢, 这可能是丁香酸改善胆汁淤积的关键调控环节。

     

  • 图  1  丁香酸对ANIT小鼠肝功能的影响

    注:与对照组比较, #P<0.05,##P<0.01,###P<0.001;与模型组比较,*P<0.05,* *P<0.01。x±sn=5。

    Figure  1.  Effect of syringic acid on liver function in ANIT mice

    图  2  丁香酸对ANIT小鼠肝脏组织病理学的影响

    注:箭头指向炎性浸润。标尺=100 μm。

    Figure  2.  Effect of syringic acid on pathological changes of liver tissue in ANIT mice

    图  3  丁香酸对ANIT小鼠结肠组织病理学的影响(标尺=100 μm)

    Figure  3.  Effect of syringic acid on pathological changes of colon tissue in ANIT mice(Scale bar=100 μm)

    图  4  丁香酸对ANIT小鼠结肠紧密连接蛋白表达的影响

    注:与对照组比较,#P<0.05;与模型组比较,*P<0.05。x±sn=5。

    Figure  4.  Effect of syringic acid on colonic tight junction protein expression in ANIT mice

    图  5  模型组和丁香酸高剂量给药组PLS-DA图(A)及置换检验图(B)

    Figure  5.  PLS-DA plots (A) and permutation plots (B) in model group and syringic acid high-dose dosing group

    图  6  小鼠血清代谢产物火山图

    Figure  6.  The volcano map of metabolites in mice serum

    图  7  小鼠血清代谢产物KEGG通路富集分析

    Figure  7.  The KEGG pathway of metabolites in mice serum

    图  8  丁香酸对ANIT小鼠肝脏中总胆汁酸含量的影响

    注:与对照组比较,###P<0.001;与模型组比较,* * *P<0.001。x±s, n=3。

    Figure  8.  Effect of syringic acid on total bile acid concentration in liver in ANIT mice

    图  9  丁香酸对ANIT小鼠粪便中总胆汁酸含量的影响

    注:与模型组比较,*P<0.05,* *P<0.01。x±s, n=3。

    Figure  9.  Effect of syringic acid on total bile acid concentration in feces in ANIT mice

    表  1  引物序列

    Table  1.   Primer sequence

    引物 正向(5’→3’) 反向(3’→5’)
    Gapdh AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA
    ZO-1 AACCCGAAACTGATGCTGTGGATAG CGCCCTTGGAATGTATGTGGAGAG
    Occludin TGGCTATGGAGGCGGCTATGG GCGATGAAGCAGAAGG
    Claudin5 CTGCCTTCCTGGACCACAACATC CACCACGCACGACATCCACAG
    下载: 导出CSV

    表  2  丁香酸对ANIT小鼠肝脏指数的影响(x±s, n=5)

    Table  2.   Effect of syringic acid on liver indexin ANIT mice (x±s, n=5)

    组别 体质量/g 肝脏质量/g 肝脏指数/%
    对照组 22.92±0.77 1.16±0.07 5.08±0.22
    模型组 20.82±0.40 1.32±0.05 6.36±0.31##
    SA低剂量组 22.30±0.53 1.11±0.04 4.96±0.15**
    SA高剂量组 23.22±0.47 1.17±0.06 5.02±0.21**
    注: 与对照组比较, ##P<0.01;与模型组比较, * *P<0.01。
    下载: 导出CSV

    表  3  SA高剂量组调控的血清代谢物

    Table  3.   Serum metabolites regulated by the SA high dose group

    编号 代谢物 TR/min Calc. MW 碎片峰 ESI Log2 FC
    1 9Z-Octadecen-12-ynoicacid 7.53 278.224 7 219.056 0, 201.046 7, 149.023 8, 95.086 1 ESI+ 1.13
    2 2-Oxindole 1.98 133.053 1 134.060 4, 106.065 8, 79.055 1 ESI+ -1.18
    3 3'-hydroxyacetophenone 4.46 136.052 7 122.036 6, 94.042 0, 79.055 0 ESI+ 5.17
    4 4-(2-Aminophenyl)-2_4-dioxobutanoate 1.64 207.053 6 162.055 3, 134.096 9, 84.960 7 ESI+ -3.63
    5 Arachidoyl Ethanolamide 9.10 355.345 2 338.341 7, 106.086 7, 88.976 5 ESI+ -4.23
    6 Corticosterone 4.15 346.214 5 329.2120, 123.081 1, 97.065 5 ESI+ 2.09
    7 Hippuric acid 1.87 179.058 6 105.034 1, 95.0499 4, 77.039 4 ESI+ -1.61
    8 Nonivamide 4.46 293.199 2 229.958 2, 137.060 0 ESI+ 5.78
    9 Palmitoylcarnitine 9.50 399.335 0 341.268 4, 144.102 1, 95.086 5, 85.029 1, 57.070 6 ESI+ -7.05
    10 Muroctasin 21.43 886.559 4 675.478 1, 303.233 7, 283.264 3, 241.012 0, 152.995 3, 78.958 0 ESI- 3.12
    11 (3S, 5Z, 7E)-26, 26, 26, 27, 27, 27-Hexafluoro-9, 10-secocholesta-5, 7, 10-triene-3, 25-diol 10.83 508.280 0 279.233 0, 227.032 5, 152.995 0 ESI- -4.59
    12 [STtrihydroxy(2∶0)]11beta_17_21-trihydroxypregn-4-ene-3_20-dione_21-sulfate 5.31 442.166 1 265.127 1, 222.107 7, 113.023 3 ESI- -2.83
    13 {2-[2-(Isobutyryloxy)-4-methylphenyl]-2-oxiranyl}methyl 2-methylbutanoate 7.07 334.178 2 289.181 4, 245.191 5, 219.826 4 ESI- -2.42
    14 1-(3, 4-Dimethoxyphenyl)-3, 5-decanediyl diacetate 3.34 394.235 9 242.919 2, 224.527 7, 153.091 4 ESI- 1.72
    15 Histamine 19.56 111.080 0 / ESI+ 2.31
    16 Cumyluron 3.05 302.118 8 254.852 7, 228.046 1, 79.956 1 ESI- -3.60
    17 Hexahydrocurcumin 9.12 374.172 5 329.176 3, 285.186 4, 270.162 9, 229.123 5 ESI- -1.65
    18 2-Phenylethyl D-glucopyranoside 2.44 284.126 0 265.108 3, 221.118 0, 203.107 3, 177.127 8 ESI- -1.17
    19 Protoporphyrin Ⅸ 18.35 580.398 2 403.358 5, 113.023 3, 85.028 3 ESI- -1.38
    20 3-Chlorotyrosine 1.86 215.034 5 / ESI- -2.07
    21 4-(Heptyloxy)benzoic acid 4.07 236.140 9 191.143 7, 146.937 7, 103.919 2 ESI- -1.76
    22 4-Allyl-2-methoxyphenyl 6-O-beta-D-xylopyranosyl-beta-D-glucopyranoside 2.60 458.179 3 266.098 2, 193.034 9, 113.023 3 ESI- -1.04
    23 4-Hydroxy-N, N, N-trimethyl-9-oxo-7-[(propiony-loxy)methyl]-3, 5, 8-trioxa-4-phosphatetracosan-1-aminium 4-oxide 16.61 552.366 8 375.326 7, 220.545 2, 175.023 9, 113.023 3 ESI- -1.32
    24 8'-Hydroxyabscisate 4.07 280.131 1 235.134 0, 191.143 7, 162.838 2 ESI- -1.63
    25 Aderbasib 3.53 416.204 8 239.164 7, 193.035 2, 113.023 4 ESI- 1.01
    26 Catalpol 3.93 362.122 3 313.111 6, 80.964 1 ESI- -2.76
    27 Cholic acid 4.93 408.287 6 352.102 3, 220.830 4 ESI- -5.86
    28 Tegobuvir 13.35 517.114 8 / ESI- -1.38
    29 Deoxycholic acid 8.09 392.292 9 345.279 9, 221.415 0 ESI- -1.98
    30 Helenalin 6.91 262.1205 235.134 0, 217.122 7, 191.143 5 ESI- -2.03
    31 Hippuric acid 1.86 179.057 6 134.987 0, 106.934 7 ESI- -1.40
    32 Isodomedin 4.13 392.220 1 305.805 8, 221.422 2, 164.835 6, 123.081 9, 78.427 5 ESI- 2.06
    33 Lusitanicoside 3.90 442.184 0 193.035 0, 175.024 3, 113.023 4 ESI- -1.10
    34 MFCD00273074 10.37 344.292 9 233.214 3, 136.908 9 ESI- -2.53
    35 MFCD12546417 1.47 189.993 0 / ESI- -1.14
    36 NBenzyloxycarbonyl-L-leucine 5.77 265.131 6 220.134 1, 192.139 1, 163.112 1, 82.028 9 ESI- 1.24
    37 NP-005196 3.32 282.146 7 263.129 1, 237.149 5, 219.138 9 ESI- -1.41
    38 NP-021701 6.02 266.151 9 247.134 0, 203.144 8, 191.144 0 ESI- -1.08
    39 Taurodeoxycholic acid 5.90 499.296 8 397.434 5, 221.893 0 ESI- -2.10
    40 Tetrofosmin 15.41 382.239 2 301.830 3, 96.959 1 ESI- 3.15
    注: FC(SA high dose vs Model)。
    下载: 导出CSV
  • [1] JANSEN P L M, GHALLAB A, VARTAK N, et al. The ascending pathophysiology of cholestatic liver disease[J]. Hepatology, 2017, 65(2): 722-738. doi: 10.1002/hep.28965
    [2] DYSON J K, BEUERS U, JONES D E J, et al. Primary sclerosing cholangitis[J]. Lancet, 2018, 391(10139): 2547-2559. doi: 10.1016/S0140-6736(18)30300-3
    [3] HSU C L, SCHNABL B. The gut-liver axis and gut microbiota in health and liver disease[J]. Nat Rev Microbiol, 2023, 21(11): 719-733. doi: 10.1038/s41579-023-00904-3
    [4] SAHOO S M, MAHAPATRA S J. Intrahepatic cholestasis of pregnancy: Are we expecting too much from ursodeoxycholic acid?[J]. Lancet Gastroenterol Hepatol, 2021, 6(11): 886.
    [5] CHAPPELL L C, BELL J L, SMITH A, et al. Ursodeoxycholic acid versus placebo in women with intrahepatic cholestasis of pregnancy (PITCHES): A randomised controlled trial[J]. Lancet, 2019, 394(10201): 849-860. doi: 10.1016/S0140-6736(19)31270-X
    [6] ARUMUGAM B, BALAGANGADHARAN K, SELVAMURUGAN N. Syringic acid, a phenolic acid, promotes osteoblast differentiation by stimulation of Runx2 expression and targeting of Smad7 by miR-21 in mouse mesenchymal stem cells[J]. J Cell Commun Signal, 2018, 12(3): 561-573. doi: 10.1007/s12079-018-0449-3
    [7] OGUT E, ARMAGAN K, GUL Z. The role of syringic acid as a neuroprotective agent for neurodegenerative disorders and future expectations[J]. Metab Brain Dis, 2022, 37(4): 859-880. doi: 10.1007/s11011-022-00960-3
    [8] LUO Q Q, GONG P F, SHI R Y, et al. Syringic acid alleviates dextran sulfate sodium-induced colitis in mice by modulating gut microbiota[J]. J Agric Food Chem, 2023, 71(22): 8458-8470. doi: 10.1021/acs.jafc.3c02441
    [9] GUZELAD O, OZKAN A, PARLAK H, et al. Protective mechanism of Syringic acid in an experimental model of Parkinson's disease[J]. Metab Brain Dis, 2021, 36(5): 1003-1014. doi: 10.1007/s11011-021-00704-9
    [10] SRINIVASULU C, RAMGOPAL M, RAMANJANEYULU G, et al. Syringic acid (SA): A review of its occurrence, biosynthesis, pharmacological and industrial importance[J]. Biomed Pharmacother, 2018, 108: 547-557. doi: 10.1016/j.biopha.2018.09.069
    [11] GHEENA S, EZHILARASAN D, SHREE HARINI K, et al. Syringic acid and silymarin concurrent administration inhibits sodium valproate-induced liver injury in rats[J]. Environ Toxicol, 2022, 37(9): 2143-2152. doi: 10.1002/tox.23557
    [12] ITOH A, ISODA K, KONDOH M, et al. Hepatoprotective effect of syringic acid and vanillic acid on CCl4-induced liver injury[J]. Biol Pharm Bull, 2010, 33(6): 983-987. doi: 10.1248/bpb.33.983
    [13] 吴守燕, 王雯婕, 颜晓霞, 等. α-萘异硫氰酸盐(ANIT)诱导的肝损伤作用研究[C]//中国毒理学会药物毒理与安全性评价学术大会(2019年)暨粤港澳大湾区生物医药产业第一届高峰论坛论文集. 广州, 2019: 334.

    WU S Y, WANG W J, YAN X X, etc. Study on the Liver Damage Induced by α-Naphthylisothiocyanate (ANIT)[C]// Academic conference on drug toxicology and safety evaluation of the Chinese toxicological society (2019) and the no. 1 biopharmaceutical industry in the Guangdong-Hong Kong-Macao greater bay area proceedings of the 2019 summit forum. Guangzhou, 2019: 334.
    [14] 吕超, 石清兰, 覃倩, 等. 小鼠实验性肝损伤模型的研究进展[J]. 中国比较医学杂志, 2019, 29(1): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDX201901019.htm

    LYU C, SHI Q L, QIN Q, et al. A review of experimental liver injury models in mice[J]. Chin J Comp Med, 2019, 29(1): 107-113. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDX201901019.htm
    [15] OU Q Q, QIAN X H, LI D Y, et al. Yinzhihuang attenuates ANIT-induced intrahepatic cholestasis in rats through upregulation of Mrp2 and Bsep expressions[J]. Pediatr Res, 2016, 79(4): 589-595. doi: 10.1038/pr.2015.252
    [16] THEILER-SCHWETZ V, ZAUFEL A, SCHLAGER H, et al. Bile acids and glucocorticoid metabolism in health and disease[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(1): 243-251. doi: 10.1016/j.bbadis.2018.08.001
    [17] 李飞, 陆伦根. 肝功能异常的评估及临床意义[J]. 临床肝胆病杂志, 2015, 31(9): 1543-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-LCGD201509060.htm

    LI F, LU L G. Evaluation of abnormal liver function and its clinical significance[J]. J Clin Hepatol, 2015, 31(9): 1543-1546. https://www.cnki.com.cn/Article/CJFDTOTAL-LCGD201509060.htm
    [18] TILG H, ADOLPH T E, TRAUNER M. Gut-liver axis: Pathophysiological concepts and clinical implications[J]. Cell Metab, 2022, 34(11): 1700-1718. doi: 10.1016/j.cmet.2022.09.017
    [19] LORENZO-ZÚNIGA V, BARTOLI R, PLANAS R, et al. Oral bile acids reduce bacterial overgrowth, bacterial translocation, and endotoxemia in cirrhotic rats[J]. Hepatology, 2003, 37(3): 551-557. doi: 10.1053/jhep.2003.50116
    [20] VERBEKE L, FARRE R, VERBINNEN B, et al. The FXR agonist obeticholic acid prevents gut barrier dysfunction and bacterial translocation in cholestatic rats[J]. Am J Pathol, 2015, 185(2): 409-419. doi: 10.1016/j.ajpath.2014.10.009
    [21] ABRAHAM C, ABREU M T, TURNER J R. Pattern recognition receptor signaling and cytokine networks in microbial defenses and regulation of intestinal barriers: Implications for inflammatory bowel disease[J]. Gastroenterology, 2022, 162(6): 1602-1616. doi: 10.1053/j.gastro.2021.12.288
    [22] MERLEN G, KAHALE N, URSIC-BEDOYA J, et al. TGR5-dependent hepatoprotection through the regulation of biliary epithelium barrier function[J]. Gut, 2020, 69(1): 146-157. doi: 10.1136/gutjnl-2018-316975
    [23] SCHNEIDER K M, ALBERS S, TRAUTWEIN C. Role of bile acids in the gut-liver axis[J]. J Hepatol, 2018, 68(5): 1083-1085. doi: 10.1016/j.jhep.2017.11.025
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  38
  • HTML全文浏览量:  8
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-13
  • 网络出版日期:  2024-04-24
  • 发布日期:  2024-04-10

目录

    /

    返回文章
    返回