留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水牛角含巯基类成分解热效应评价研究

黄思莹 冯旗园 包旺林 黄潇正 武文星 赵明 段金廒 刘睿

黄思莹, 冯旗园, 包旺林, 黄潇正, 武文星, 赵明, 段金廒, 刘睿. 水牛角含巯基类成分解热效应评价研究[J]. 南京中医药大学学报, 2024, 40(3): 268-277. doi: 10.14148/j.issn.1672-0482.2024.0268
引用本文: 黄思莹, 冯旗园, 包旺林, 黄潇正, 武文星, 赵明, 段金廒, 刘睿. 水牛角含巯基类成分解热效应评价研究[J]. 南京中医药大学学报, 2024, 40(3): 268-277. doi: 10.14148/j.issn.1672-0482.2024.0268
HUANG Siying, FENG Qiyuan, BAO Wanglin, HUANG Xiaozheng, WU Wenxing, ZHAO Ming, DUAN Jinao, LIU Rui. Antipyretic Activity of Sulfhydryl Active Fractions Extracted From Bubali Cornu[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(3): 268-277. doi: 10.14148/j.issn.1672-0482.2024.0268
Citation: HUANG Siying, FENG Qiyuan, BAO Wanglin, HUANG Xiaozheng, WU Wenxing, ZHAO Ming, DUAN Jinao, LIU Rui. Antipyretic Activity of Sulfhydryl Active Fractions Extracted From Bubali Cornu[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(3): 268-277. doi: 10.14148/j.issn.1672-0482.2024.0268

水牛角含巯基类成分解热效应评价研究

doi: 10.14148/j.issn.1672-0482.2024.0268
基金项目: 

国家自然科学基金面上项目 81973450

江苏省高校“青蓝工程”中青年学术带头人项目 

江苏省农业科技自主创新项目 CX(22)3173

南京中医药大学中药学一流学科开放课题 2020YLXK009

详细信息
    作者简介:

    黄思莹, 女, 硕士研究生, E-mail: hsyww1231@163.com

    通讯作者:

    段金廒, 男, 教授, 博士生导师, 主要从事中药资源化学与方剂功效物质基础研究, E-mail: dja@njucm.edu.cn

    刘睿, 男, 教授, 博士生导师, 主要从事动物药资源化学研究, E-mail: liurui@njucm.edu.cn

  • 中图分类号: R285.5

Antipyretic Activity of Sulfhydryl Active Fractions Extracted From Bubali Cornu

  • 摘要:   目的  制备水牛角含巯基类成分(-SH active fractions, SHF), 评价其解热效应。  方法  通过十二烷基硫酸钠-二硫苏糖醇(SDS-DTT)联合提取法制备水牛角SHF, 并采用Ellman法测定游离巯基(-SH)浓度; 基于nano LC-MS/MS分析表征水牛角SHF物质组成。采用脂多糖(LPS)建立大鼠发热模型评价水牛角SHF解热活性, 采用酶联免疫吸附法(ELISA)试剂盒测定血浆中前列腺素E2(PGE2)、白细胞介素-1β(IL-1β)、肿瘤坏死因子-α(TNF-α)的水平, 测定下丘脑环磷酸腺苷(cAMP)、PGE2、TNF-α的水平; 采用非靶向代谢组学的方法, 探究水牛角SHF对发热大鼠血浆代谢物干预情况。  结果  SDS-DTT联合提取法可有效制备水牛角SHF, 其中主要成分为含丰富半胱氨酸残基(Cysteine, Cys)的Ⅰ型、Ⅱ型角蛋白、角蛋白相关蛋白等, SHF的-SH占蛋白质比例较水牛角水提液提高了约20倍。发热大鼠给予水牛角SHF 0.5 h后大鼠体温显著下降(P < 0.01), 且解热效应持续4.5 h; 同时显著降低血浆及下丘脑PGE2、IL-1β、TNF-α、cAMP等水平。从空白组与模型组血浆样本中共鉴定出137个潜在差异代谢物, 水牛角SHF可回调其中31个代谢物, 包括溶血磷脂酸、磷脂酰肌醇、磷脂酸、甘油三酯、磷脂酰胆碱等, 主要涉及甘油磷脂代谢通路。  结论  水牛角SHF解热效应确切, 给药剂量为水提液的1/10即可显示与其相当的解热效应, 为水牛角清热功效物质基础研究提供了方向和依据。

     

  • 图  1  水牛角SHF和水提液的蛋白质种类

    Figure  1.  Protein types in extract of Bubali Cornu

    图  2  SHF对发热大鼠血浆中PGE2、IL-1β、TNF-α及下丘脑组织中cAMP、PGE2、TNF-α水平的影响

    注:与空白组相比, ###P < 0.001;与模型组相比, * *P < 0.01, * * *P < 0.001。x±s, n=8。

    Figure  2.  Effect of SHF on the levels of PGE2, IL-1β, TNF-α in plasma and cAMP, PGE2, TNF-α in hypothalamic tissues of febrile rats

    图  3  正(A)、负(B)离子模式下UPLC-Q-TOF-MS数据的多元统计分析

    注:C.空白组; M.模型组; S.水牛角SHF组; A1, B1.PCA分析得分图; A2, B2.OPLS-DA图; A3, B3.OPLS-DA模型置换检验图

    Figure  3.  Multivariate statistical analysis of UPLC-Q-TOF-MS data in positive (A) and negative (B) ion modes

    图  4  发热相关代谢通路(A)和水牛角SHF解热相关代谢通路(B)

    Figure  4.  Febrile metabolic pathway (A) and antipyretic metabolic pathway of SHF (B)

    表  1  水牛角水提液和SHF中蛋白和游离-SH含量(x±s, n=3)

    Table  1.   Protein and free -SH levels in extract of Bubali Cornu(x±s, n=3)

    样品 游离巯基浓度/(mmol·L-1) 蛋白浓度/(g·L-1) 游离-SH浓度/蛋白浓度/(mmol·g-1)
    水牛角水提液 1.618±0.011 64.505±2.749 0.025±0.001
    水牛角SHF 42.188±0.530 86.029±2.417 0.491±0.019
    下载: 导出CSV

    表  2  水牛角SHF的蛋白信息

    Table  2.   Protein information for SHF in Bubali Cornu

    序号 蛋白名称 覆盖率/% 唯一肽段数量 总肽段数量 含-SH肽段数量
    1 Keratin-associated protein 3-3 39 2 5 3
    2 Keratin-associated protein 3-1 36 2 12 1
    3 Keratin, type Ⅰ microfibrillar 48 kDa, component 8C-1 25 8 28 20
    4 Keratin, type Ⅱ cuticular Hb1 23 5 18 5
    5 Keratin, type Ⅱ cuticular Hb3 20 10 22 15
    6 Keratin, high-sulfur matrix protein, ⅢA3 20 4 4 4
    7 Keratin, type Ⅰ microfibrillar, 47.6 kDa 19 3 22 13
    8 Keratin, type Ⅱ microfibrillar, component 5 18 6 13 4
    9 Collagen alpha-1(Ⅰ) chain 17 22 26 -
    10 Keratin, type Ⅰ cuticular Ha5 15 4 20 12
    11 Ubiquitin-ribosomal protein eL40 fusion protein 15 4 4 -
    12 Chymotrypsin-like elastase family member 2A 14 6 6 -
    13 Keratin, type Ⅱ cytoskeletal 5 9 19 15 12
    14 Collagen alpha-1(Ⅲ) chain 9 15 19 -
    15 Collagen alpha-2(Ⅰ) chain 8 9 9 -
    16 Heat shock protein beta-1 8 2 2 -
    17 Desmocollin-1 4 3 2 1
    18 Peroxiredoxin-6 4 2 4 -
    19 Desmoglein-1 3 4 4 -
    下载: 导出CSV

    表  3  各组大鼠体温变化(x±s, ℃, n=10)

    Table  3.   Changes in body temperature of rats in each group(x±s, ℃, n=10)

    分组 剂量/(g·kg-1) 基础体温 造模后5.5 h 给药0.5 h 给药1 h 给药1.5 h
    空白组 37.36±0.20 36.97±0.20 36.80±0.15 36.82±0.25 36.84±0.15
    模型组 37.73±0.30 39.17±0.23### 39.17±0.37### 39.16±0.37### 39.08±0.17###
    阿司匹林组 0.10 37.73±0.27 39.05±0.23### 38.53±0.16** 37.78±0.30*** 37.88±0.31***
    水牛角SHF低剂量组 0.312 5 37.72±0.27 39.05±0.31### 38.78±0.19 38.43±0.44*** 38.37±0.51***
    水牛角SHF中剂量组 0.625 37.91±0.13 39.11±0.17### 38.78±0.59* 38.68±0.57** 38.63±0.51**
    水牛角SHF高剂量组 1.25 37.85±0.30 39.12±0.25### 38.67±0.36** 38.61±0.35** 38.39±0.41***
    水牛角水提液组 3.125 37.67±0.27 38.90±0.25### 38.71±0.39* 38.61±0.51** 38.32±0.44***
    分组 剂量/(g·kg-1) 给药2 h 给药2.5 h 给药3.5 h 给药4.5 h
    空白组 36.87±0.16 36.93±0.18 36.84±0.20 36.99±0.25
    模型组 38.85±0.21### 38.71±0.28### 38.61±0.23### 38.47±0.21###
    阿司匹林组 0.10 37.83±0.24*** 37.81±0.25*** 37.90±0.27*** 37.75±0.29***
    水牛角SHF低剂量组 0.312 5 38.16±0.49*** 38.14±0.43** 38.13±0.42* 37.94±0.44*
    水牛角SHF中剂量组 0.625 38.36±0.47** 38.30±0.30** 38.24±0.37* 37.99±0.31**
    水牛角SHF高剂量组 1.25 38.20±0.30*** 38.11±0.31** 37.94±0.28*** 37.87±0.29**
    水牛角水提液组 3.125 38.20±0.40*** 38.14±0.51** 38.04±0.31** 37.93±0.27**
    注:与空白组相比, ###P < 0.001;与模型组相比, *P < 0.05, * *P < 0.01, * * *P < 0.001。
    下载: 导出CSV

    表  4  潜在差异代谢物

    Table  4.   Potential differential metabolites

    No. tR/min 生物标志物 ESI m/z 含量差异
    M vs C S vs M
    1 1.78 alpha-CEHC glucuronide + 455.190 8 ### ***
    2 10.70 PC[DiMe(9, 5)/DiMe(9, 3)] + 839.567 1 ### ***
    3 10.72 Piritramide + 431.276 6 ### ***
    4 13.24 TG[18∶1(11Z)/16∶1(9Z)/18∶2(9Z, 12Z)] + 872.769 5 ### ***
    5 12.42 Trihexosylceramide (d18∶1/16∶0) + 1041.695 1 ### ***
    6 10.72 Adrenic acid + 355.261 7 ## ***
    7 11.69 Keratan + 1 070.143 7 ### **
    8 7.61 1'-O-Acetylpaxilline + 478.266 9 ### **
    9 13.09 15-Oleoylsolamin + 846.758 0 ### *
    10 11.66 PA(8∶0/13∶0) + 512.337 7 ## *
    11 13.24 TG[14∶0/20∶3(5Z, 8Z, 11Z)/20∶2n6] + 898.787 8 ### *
    12 13.62 TG[14∶0/20∶3(5Z, 8Z, 11Z)/16∶0] + 846.757 7 ### *
    13 12.89 N-hexadecanoylsphinganine-1-phosphocholine + 705.585 6 ##
    14 14.10 TG[16∶0/18∶1(11Z)/18∶3(6Z, 9Z, 12Z)] + 855.747 1 ###
    15 12.73 Ligustroside + 525.203 8 ###
    16 15.71 PC[18∶0/22∶5(7Z, 10Z, 13Z, 16Z, 19Z)] + 836.625 2 ###
    17 9.39 3, 4, 5-Trihydroxy-6-{[(2Z)-2-(phenylmethylidene)Heptyl]oxy}oxane-2-carboxylic acid - 425.187 2 ## ***
    18 11.88 LysoPA[20∶4(8Z, 11Z, 14Z, 17Z)/0∶0] - 457.238 4 ## **
    19 15.71 all-trans-Decaprenyl diphosphate - 857.553 6 ### **
    20 15.28 Isomorellic acid - 605.248 0 # *
    21 4.95 Xylometazoline - 289.193 1 ## **
    22 4.35 Hexobarbital - 281.111 6 ### ***
    23 4.92 Busulfan - 245.014 9 ### ***
    24 1.17 3-Dehydroquinate - 189.040 5 ### **
    25 15.72 PI[18∶1(11Z)/16∶0] - 881.533 5 # **
    26 11.89 LysoPA[0∶0/18∶2(9Z, 12Z)] - 433.239 1 # **
    27 3.92 Phenol - 93.034 7 ### ***
    28 11.42 Valerenolic acid - 249.150 7
    29 13.09 PE[20∶0/16∶1(9Z)] - 790.551 7
    30 1.16 Uric acid - 167.019 6
    31 11.47 Sphingosine 1-phosphate - 378.244 8
    注: C.空白组; M.模型组; S.水牛角SHF组; 与空白组相比, #P < 0.05, ##P < 0.01, ###P < 0.001;与模型组相比, *P < 0.05, * *P < 0.01, * * *P < 0.001。
    下载: 导出CSV
  • [1] 陶弘景. 名医别录[M]. 尚志钧, 辑校. 北京: 中国中医药出版社, 2013: 142-143.

    TAO H J. Miscellaneous records of famous physicians[M]. SHANG Z J, edited and corrected. Beijing: Chinese Medicine Press, 2013: 142-143.
    [2] 汤佳瑶, 武文星, 朱悦, 等. 动物药水牛角基础与应用研究进展[J]. 南京中医药大学学报, 2022, 38(10): 880-891. doi: 10.14148/j.issn.1672-0482.2022.0880

    TANG J Y, WU W X, ZHU Y, et al. Research progress on the basis and application of buffalo horn[J]. J Nanjing Univ Tradit Chin Med, 2022, 38(10): 880-891. doi: 10.14148/j.issn.1672-0482.2022.0880
    [3] 刘婷, 韩疏影, 康安, 等. 核壳型Fe3O4@PDA@Au纳米材料对水牛角含巯基肽类成分的富集研究[J]. 南京中医药大学学报, 2020, 36(3): 396-400. http://xb.njucm.edu.cn/article/id/zr20200322

    LIU T, HAN S Y, KANG A, et al. Enrichment of thiol-containing peptides in water buffalo horn by core-shell Fe3O4@PDA@Au nano-materials[J]. J Nanjing Univ Tradit Chin Med, 2020, 36(3): 396-400. http://xb.njucm.edu.cn/article/id/zr20200322
    [4] ZHU R, SHANG G J, ZHANG B Y, et al. Unlocking the potential of N-acetylcysteine: Improving hepatopancreas inflammation, antioxidant capacity and health in common carp (Cyprinus carpio) via the MAPK/NF-κB/Nrf2 signalling pathway[J]. Fish Shellfish Immunol, 2024, 144: 109294. doi: 10.1016/j.fsi.2023.109294
    [5] KWON D H, CHA H J, LEE H, et al. Protective effect of glutathione against oxidative stress-induced cytotoxicity in RAW 264.7 macrophages through activating the nuclear factor erythroid 2-related factor-2/heme oxygenase-1 pathway[J]. Antioxidants, 2019, 8(4): 82. doi: 10.3390/antiox8040082
    [6] LI G F, FU J H, ZHAO Y, et al. Alpha-lipoic acid exerts anti-inflammatory effects on lipopolysaccharide-stimulated rat mesangial cells via inhibition of nuclear factor kappa B (NF-κB) signaling pathway[J]. Inflammation, 2015, 38(2): 510-519. doi: 10.1007/s10753-014-9957-3
    [7] 庾石山, 王晓良, 符江, 等. 一种角蛋白BD-11、制法和其药物组合物与用途: CN114599672B[P]. 2024-01-23.

    YU S S, WANG X L, FU J, et al. Keratin BD-11 as well as preparation method, pharmaceutical composition and application thereof: CN114599672B[P]. 2024-01-23.
    [8] 杨彪, 胡玉梅, 刘文君, 等. 脂多糖致大鼠发热特点与机制研究进展[J]. 世界科学技术-中医药现代化, 2020, 22(7): 2198-2204. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX202007011.htm

    YANG B, HU Y M, LIU W J, et al. Research of progress of the characteristics and mechanism of fever induced by LPS in rats[J]. Mod Tradit Chin Med Mater Med World Sci Technol, 2020, 22(7): 2198-2204. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX202007011.htm
    [9] 赵晶晶, 武文星, 朱昭颖, 等. 牦牛角对LPS诱导发热大鼠模型的解热活性评价及机制研究[J]. 南京中医药大学学报, 2022, 38(10): 936-944. doi: 10.14148/j.issn.1672-0482.2022.0936

    ZHAO J J, WU W X, ZHU Z Y, et al. Evaluation of antipyretic activity and potential mechanism of yak horn on LPS-induced fever rat model[J]. J Nanjing Univ Tradit Chin Med, 2022, 38(10): 936-944. doi: 10.14148/j.issn.1672-0482.2022.0936
    [10] LIU R, HUANG Q, SHAN J J, et al. Metabolomics of the antipyretic effects of bubali Cornu (water buffalo horn) in rats[J]. PLoS ONE, 2016, 11(7): e0158478. doi: 10.1371/journal.pone.0158478
    [11] 武文星, 郭盛, 吴励萍, 等. 免疫应激介导的赤芍缓解补骨脂肝脏毒性作用评价及其调控代谢网络分析[J]. 药学学报, 2021, 56(7): 1789-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXB202107006.htm

    WU W X, GUO S, WU L P, et al. Paeoniae Rubra Radix decreases the hepatotoxicity of Psoraleae Fructus in an immunologically stressed rat model: A metabolic network analysis[J]. Acta Pharm Sin, 2021, 56(7): 1789-1796. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXB202107006.htm
    [12] LIU R, HUANG Q, DUAN J N, et al. Peptidome characterization of the antipyretic fraction of Bubali Cornu aqueous extract by nano liquid chromatography with orbitrap mass spectrometry detection[J]. J Sep Sci, 2017, 40(2): 587-595. doi: 10.1002/jssc.201600821
    [13] LIU R, WANG M, DUAN JA. Antipyretic and antioxidant activities of the aqueous extract of Cornu Bubali (water buffalo horn)[J]. Am J Chin Med, 2010, 38(2): 293-306. doi: 10.1142/S0192415X10007853
    [14] 刘睿, 段金廒, 李友宾, 等. 水牛角主要药效学评价及解热活性物质基础研究[J]. 南京中医药大学学报(自然科学版), 2007, 23(5): 297-301. https://www.cnki.com.cn/Article/CJFDTOTAL-NJZY200705010.htm

    LIU R, DUAN J A, LI Y B, et al. Pharmacodynamics research of water buffalo horn and the basic study of water baffalo horn antipyretic active compound[J]. J Nanjing Univ Tradit Chin Med, 2007, 23(5): 297-301. https://www.cnki.com.cn/Article/CJFDTOTAL-NJZY200705010.htm
    [15] 娄东晓, 严冬, 郭敏, 等. 毛萼香茶菜醇提物对干酵母致热大鼠解热机制研究[J]. 中国药科大学学报, 2019, 50(1): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYD201901014.htm

    LOU D X, YAN D, GUO M, et al. Antipyretic effect of Isodon eriocalyx extracts on yeast-induced fever in rats[J]. J China Pharm Univ, 2019, 50(1): 87-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYD201901014.htm
    [16] LAI J F, WU H C, QIN A L. Cytokines in febrile diseases[J]. J Interferon Cytokine Res, 2021, 41(1): 1-11.
    [17] 吴良发, 周国平, 袁铭铭, 等. 大青叶不同提取物解热作用比较及其机制研究[J]. 中国现代应用药学, 2022, 39(16): 2075-2079. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYD202216005.htm

    WU L F, ZHOU G P, YUAN M M, et al. Study on comparision of antipyretic effect of different folium isatidis extract and its mechanism[J]. Chin J Mod Appl Pharm, 2022, 39(16): 2075-2079. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYD202216005.htm
    [18] ZHAO T T, MA A J, YANG S S, et al. Integrated metabolome and transcriptome analyses revealing the effects of thermal stress on lipid metabolism in juvenile turbot Scophthalmus maximus[J]. J Therm Biol, 2021, 99: 102937.
    [19] MORENO-VEDIA J, LLOP D, RODRIGUEZ-CALVO R, et al. Lipidomics of triglyceride-rich lipoproteins derived from hyperlipidemic patients on inflammation[J]. Eur J Clin Invest, 2024, 54(3): e14132.
    [20] NORRIS G H, BLESSO C N. Dietary and endogenous sphingolipid metabolism in chronic inflammation[J]. Nutrients, 2017, 9(11): 1180.
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  9
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-22
  • 网络出版日期:  2024-03-15
  • 发布日期:  2024-03-10

目录

    /

    返回文章
    返回