留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于数据挖掘和网络药理学研究中药免疫增强剂的作用机制及用药规律

信立媛 郑亮

信立媛, 郑亮. 基于数据挖掘和网络药理学研究中药免疫增强剂的作用机制及用药规律[J]. 南京中医药大学学报, 2024, 40(2): 174-183. doi: 10.14148/j.issn.1672-0482.2024.0174
引用本文: 信立媛, 郑亮. 基于数据挖掘和网络药理学研究中药免疫增强剂的作用机制及用药规律[J]. 南京中医药大学学报, 2024, 40(2): 174-183. doi: 10.14148/j.issn.1672-0482.2024.0174
XIN Liyuan, ZHENG Liang. Study on the Medication Rule and Action Mechanism of Traditional Chinese Medicine Immune Enhancer Based on Data Mining and Network Pharmacology[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(2): 174-183. doi: 10.14148/j.issn.1672-0482.2024.0174
Citation: XIN Liyuan, ZHENG Liang. Study on the Medication Rule and Action Mechanism of Traditional Chinese Medicine Immune Enhancer Based on Data Mining and Network Pharmacology[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(2): 174-183. doi: 10.14148/j.issn.1672-0482.2024.0174

基于数据挖掘和网络药理学研究中药免疫增强剂的作用机制及用药规律

doi: 10.14148/j.issn.1672-0482.2024.0174
基金项目: 

第四批省名老中医药专家传承工作室建设项目 苏中医科教〔2021〕7号

详细信息
    作者简介:

    信立媛, 女, 硕士研究生, E-mail: xinliyuan1998@163.com

    通讯作者:

    郑亮, 男, 教授, 主任中医师, 博士生导师, 主要从事中医药防治脾胃系疾病的研究, E-mail: 13915919898@126.com

  • 中图分类号: R212

Study on the Medication Rule and Action Mechanism of Traditional Chinese Medicine Immune Enhancer Based on Data Mining and Network Pharmacology

  • 摘要:   目的  采用数据挖掘的方法探究复方专利处方中用于增强免疫力的中药配伍规律, 并运用网络药理学、分子对接技术分析其中核心药物的潜在作用机制。  方法  挖掘国家知识产权局中药增强免疫力的复方专利数据, 进行中药频次、关联规则以及复杂网络分析, 并筛选出核心药物。利用TCMSP平台筛选核心药物活性成分并进行靶点预测, 于疾病数据库OMIM、DrugBank、GeneCards、Uniprot筛选免疫力相关靶点, 获取核心中药与免疫力的交集靶点; 对交集靶点进行蛋白互作(PPI)分析和基因本体(GO)功能及京都基因与基因组百科全书(KEGG)通路富集分析。使用分子对接技术对药物活性成分、关键靶点进行验证。  结果  分析中药复方专利得出5味核心药物: 黄芪、人参、枸杞子、茯苓、当归, 有效活性成分对应靶点214个, 1 784个免疫力相关靶点, 交集靶点55个, 关键作用靶点有RELA、TNF、TP53、IL-6。GO分析结果显示主要调控对细菌起源分子的反应、对脂多糖的反应、对生物刺激的反应等。KEGG通路160条, 主要涉及脂质与动脉粥样硬化、南美洲锥虫病、TNF信号通路、癌症通路等多条信号通路。分子对接结果显示, 槲皮素、山柰酚能较好地与RELA、TNF、TP53、IL-6进行结合。  结论  专利文献中增强免疫力的中药以补虚药为主, 主要有效成分为槲皮素、山柰酚等化合物, 以RELA、TNF、TP53、IL-6为关键靶点, 通过脂质和动脉粥样硬化、南美洲锥虫病、TNF信号通路、癌症通路等多条通路发挥增强免疫力的作用。

     

  • 图  1  相关专利年度公布情况

    Figure  1.  Annual announcement of relevant patents

    图  2  高频中药性味归经图

    Figure  2.  High-frequency distribution graph of properties and flavors of traditional Chinese medicine

    图  3  常用药物复杂网络分析

    Figure  3.  Complex network analysis of commonly used drugs

    图  4  核心药物成分与免疫力靶点Venn图

    Figure  4.  Venn diagram of core drug components and immune targets

    图  5  免疫力相关核心中药成分靶点网络关系图

    Figure  5.  Network diagram of immune-related core traditional Chinese medicine component targets

    图  6  PPI网络图

    Figure  6.  PPI network diagram

    图  7  GO功能富集分析柱状图

    Figure  7.  GO functional enrichment analysis histogram

    图  8  KEGG通路富集分析气泡图

    Figure  8.  KEGG pathway enrichment analysis bubble chart

    图  9  分子对接图

    注:A. RELA-槲皮素; B. TNF-山柰酚; C. TP53-槲皮素; D. IL-6-槲皮素

    Figure  9.  Molecular docking diagram

    表  1  相关专利中的高频药物(≥20)

    Table  1.   High-frequency drugs (≥20 times) in relevant patents

    序号 药物 频数 序号 药物 频数
    1 黄芪 116 17 肉苁蓉 30
    2 人参 93 18 淫羊藿 30
    3 枸杞子 92 19 酸枣仁 29
    4 茯苓 75 20 五味子 29
    5 当归 66 21 冬虫夏草 27
    6 山药 61 22 葛根 26
    7 甘草 58 23 熟地黄 26
    8 灵芝 57 24 麦冬 25
    9 大枣 50 25 何首乌 24
    10 白术 48 26 山楂 24
    11 党参 47 27 薏苡仁 24
    12 西洋参 41 28 桑椹 22
    13 丹参 37 29 杜仲 21
    14 石斛 36 30 鹿茸 21
    15 红景天 33 31 陈皮 20
    16 黄精 32 32 龙眼肉 20
    下载: 导出CSV

    表  2  中药关联规则分析

    Table  2.   Analysis of traditional Chinese medicine association rules

    序号 后项 前项 实例数 支持度/% 置信度/%
    1 当归 黄芪 115 36.62 35.65
    2 枸杞子 黄芪 115 36.62 38.26
    3 枸杞子 人参 92 29.30 38.04
    4 黄芪 人参 92 29.30 41.30
    5 大枣 枸杞子 91 28.98 36.26
    6 人参 枸杞子 91 28.98 38.46
    7 黄芪 枸杞子 91 28.98 48.35
    8 当归 茯苓 75 23.89 36.00
    9 枸杞子 茯苓 75 23.89 38.67
    10 黄芪 茯苓 75 23.89 40.00
    11 茯苓 当归 65 20.70 41.54
    12 人参 当归 65 20.70 40.00
    13 枸杞子 当归 65 20.70 47.69
    14 黄芪 当归 65 20.70 63.08
    下载: 导出CSV

    表  3  药物活性成分的网络节点信息

    Table  3.   Network node information of active pharmaceutical components

    编号 MOL ID 化学成分 化学成分中文名 度值 对应中药
    B MOL000098 Quercetin 槲皮素 46 黄芪、枸杞子
    A MOL000422 Kaempferol 山柰酚 17 黄芪、人参
    RS5 MOL005344 Ginsenoside Rh2 人参皂苷Rh2 8 人参
    HQ2 MOL000354 Isorhamnetin 异鼠李素 7 黄芪
    HQ4 MOL000378 7-O-Methylisomucronulatol 7-O-甲基-异微凸剑叶莎醇 6 黄芪
    HQ7 MOL000392 Formononetin 刺芒柄花素 6 黄芪
    C MOL000358 beta-Sitosterol β-谷甾醇 6 当归、人参
    HQ8 MOL000417 Calycosin 毛蕊异黄酮 4 黄芪
    GQZ1 MOL008400 Glycitein 黄豆黄素 4 枸杞子
    RS1 MOL005384 Suchilactone 苏齐内酯 3 人参
    RS4 MOL005321 Frutinone A 灌木远志酮A 3 人参
    HQ1 MOL000239 Jaranol 华良姜素 2 黄芪
    HQ3 MOL000371 3,9-Di-O-methylnissolin 3,9-二-O-甲基尼森香豌豆紫檀酚 2 黄芪
    HQ5 MOL000380 (6aR, 11aR)-9,10-dimethoxy-6a, 11a-dihydro-6H-benzofurano[3,2-c]chromen-3-ol 黄芪紫檀烷苷 2 黄芪
    HQ6 MOL000387 Bifendate 联苯双酯 2 黄芪
    RS2 MOL000787 Fumarine 原鸦片碱 2 人参
    RS3 MOL003648 Inermin 马卡因 2 人参
    RS6 MOL005356 Girinimbin 吉九里香碱 2 人参
    下载: 导出CSV

    表  4  活性成分与靶点受体蛋白的结合结果

    Table  4.   Binding results of active components and target receptor proteins

    基因 Uniprot ID号 化合物 化合物中文名 结合能/(kcal·mol-1)
    RELA P05412 Quercetin
    Kaempferol
    Isorhamnetin
    槲皮素
    山柰酚
    异鼠李素
    -9.20
    -9.10
    -8.80
    TNF P28482 Kaempferol
    Quercetin
    Ginsenoside Rh2
    山柰酚
    槲皮素
    人参皂苷Rh2
    -9.00
    -8.60
    -8.30
    TP53 P04637 Quercetin 槲皮素 -6.10
    IL-6 P05231 Quercetin 槲皮素 -7.10
    下载: 导出CSV
  • [1] 尹忞强, 申丽媛, 姜泽昆, 等. 白藜芦醇对免疫力低下小鼠的免疫调节作用研究[J]. 食品科技, 2021, 46(9): 216-220.

    YIN M Q, SHEN L Y, JIANG Z K, et al. Effect of resveratrol on immunomodulatory in immunocompromised mice[J]. Food Sci Technol, 2021, 46(9): 216-220.
    [2] SHIN S, OH H, KANG M S, et al. Feasibility and effectiveness assessment of a mobile application for subhealth management: Study protocol for a randomized controlled trial[J]. Medicine, 2019, 98(21): e15704. doi: 10.1097/MD.0000000000015704
    [3] 苏晓宇. 数据挖掘聚类分析方法在中医临床中的运用[J]. 实用中西医结合临床, 2010, 10(6): 90-93.

    SU X Y. Application of data mining cluster analysis method in TCM clinic[J]. Pract Clin J Integr Tradit Chin West Med, 2010, 10(6): 90-93.
    [4] RU J L, LI P, WANG J N, et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines[J]. J Cheminform, 2014, 6: 13. doi: 10.1186/1758-2946-6-13
    [5] MORGAT A, LOMBARDOT T, COUDERT E, et al. Enzyme annotation in UniProtKB using Rhea[J]. Bioinformatics, 2020, 36(6): 1896-1901. doi: 10.1093/bioinformatics/btz817
    [6] AMBERGER J S, BOCCHINI C A, SCHIETTECATTE F, et al. OMIM. org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders[J]. Nucleic Acids Res, 2015, 43: 789-798. doi: 10.1093/nar/gku1205
    [7] WISHART D S, FEUNANG Y D, GUO A C, et al. DrugBank 5.0: A major update to the DrugBank database for 2018[J]. Nucleic Acids Res, 2018, 46(d1): D1074-D1082. doi: 10.1093/nar/gkx1037
    [8] SAFRAN M, DALAH I, ALEXANDER J, et al. GeneCards Version 3: The human gene integrator[J]. Database, 2010, 2010: baq020.
    [9] SZKLARCZYK D, MORRIS J H, COOK H, et al. The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible[J]. Nucleic Acids Res, 2017, 45(D1): D362-D368. doi: 10.1093/nar/gkw937
    [10] ZHOU Y Y, ZHOU B, PACHE L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets[J]. Nat Commun, 2019, 10(1): 1523. doi: 10.1038/s41467-019-09234-6
    [11] KIM S, THIESSEN P A, BOLTON E E, et al. PubChem Substance and Compound databases[J]. Nucleic Acids Res, 2016, 44(D1): D1202-D1213. doi: 10.1093/nar/gkv951
    [12] BURLEY S K, BERMAN H M, KLEYWEGT G J, et al. Protein data bank (PDB): The single global macromolecular structure archive[J]. Methods Mol Biol, 2017, 1607: 627-641.
    [13] XIA Q Q, LIU M T, LI H, et al. Network pharmacology strategy to investigate the pharmacological mechanism of HuangQiXiXin Decoction on cough variant asthma and evidence-based medicine approach validation[J]. Evid Based Complement Alternat Med, 2020, 2020: 3829092.
    [14] 王玲玲, 付桃芳, 杜俊英, 等. 基于SPSS Clementine的关联规则分析在中医药数据挖掘中的应用优势和局限[J]. 云南中医学院学报, 2016, 39(6): 98-102.

    WANG L L, FU T F, DU J Y, et al. The application advantages and limitations of association rules analysis based on SPSS clementine in traditional Chinese medicine data mining[J]. J Yunnan Univ Tradit Chin Med, 2016, 39(6): 98-102.
    [15] 赖菲菲, 孙治中, 黄勇智, 等. 基于网络药理学探讨麻黄治疗儿童哮喘作用机制[J]. 辽宁中医药大学学报, 2019, 21(11): 211-217.

    LAI F F, SUN Z Z, HUANG Y Z, et al. Mechanism of Mahuang in treating childhood asthma based on network pharmacology[J]. J Liaoning Univ Tradit Chin Med, 2019, 21(11): 211-217.
    [16] 李瑶, 付浩, 李文林, 等. 面部色素性疾病中药面膜专利处方分析及作用机制探讨[J]. 中国皮肤性病学杂志, 2021, 35(8): 925-933.

    LI Y, FU H, LI W L, et al. Analysis of the prescription ingredients and mechanism of action of the patented traditional Chinese medicine mask for facial pigmented diseases[J]. Chin J Dermatovenereology, 2021, 35(8): 925-933.
    [17] 卢增辉, 袁月, 刘方乐, 等. 基于入血成分分析莲胆消炎方抗溃疡性结肠炎的作用机制[J]. 中药材, 2021, 44(4): 863-872.

    LU Z H, YUAN Y, LIU F L, et al. Mechanism study of Liandan Xiaoyan prescription on attenuating ulcerative colitis based on the components into the blood analysis[J]. J Chin Med Mater, 2021, 44(4): 863-872.
    [18] LI B J, RUI J Q, DING X J, et al. Deciphering the multicomponent synergy mechanisms of SiNiSan prescription on irritable bowel syndrome using a bioinformatics/network topology based strategy[J]. Phytomedicine, 2019, 63: 152982. doi: 10.1016/j.phymed.2019.152982
    [19] 但文超, 刘子彰, 何庆勇, 等. 基于国家专利的中药复方干预慢性胆囊炎的数据挖掘研究[J]. 世界科学技术-中医药现代化, 2021, 23(6): 2043-2050.

    DAN W C, LIU Z Z, HE Q Y, et al. Study on data-mining of compound TCM with national patents for treatment of chronic cholecystitis[J]. Mod Tradit Chin Med Mater Med World Sci Technol, 2021, 23(6): 2043-2050.
    [20] 李东垣. 珍珠囊补遗药性赋[M]. 上海: 上海科学技术出版社, 1958: 30, 50.

    LI D Y. Pearl capsules supplement the medicinal properties[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1958: 30, 50.
    [21] 神农本草经[M]. 太原: 山西科学技术出版社, 2018: 14.

    Shen Nong's classic of the materia medica[M]. Taiyuan: Shanxi Scientific & Technical Publishers, 2018: 14.
    [22] 孟诜. 食疗本草[M]. 北京: 人民卫生出版社, 1984: 16.

    MENG S. Materia medica for dietary therapy[M]. Beijing: People's Medical Publishing House, 1984: 16.
    [23] 张暖. 齐元富教授治疗乳腺癌用药规律及其核心方调控Wnt/β-catenin信号通路的实验研究[D]. 济南: 山东中医药大学, 2020.

    ZHANG N. Experimental study on professor qi yuanfu's medication rule in treating breast cancer and its core prescription regulating Wnt/β-catenin signal pathway[D]. Jinan: Shandong University of Traditional Chinese Medicine, 2020.
    [24] 郭换, 刘素娟, 陈林, 等. 仙耆口服液对小鼠免疫力功能影响的研究[J]. 亚太传统医药, 2018, 14(9): 12-13.

    GUO H, LIU S J, CHEN L, et al. Effects of xianqi oral liquid on immune function of mouse[J]. Asia Pac Tradit Med, 2018, 14(9): 12-13.
    [25] 王文越, 刘珊, 吕琴, 等. 黄芪-当归药对益气活血药理作用研究进展[J]. 中国实验方剂学杂志, 2021, 27(6): 207-216.

    WANG W Y, LIU S, LYU Q, et al. Research progress on pharmacological effect of astragali Radix-angelicae Sinensis Radix on invigorating qi and activating blood[J]. Chin J Exp Tradit Med Formulae, 2021, 27(6): 207-216.
    [26] 司丽君, 王雪, 王林林, 等. 槲皮素的抗炎免疫及部分机制研究[J]. 中国医药导报, 2021, 18(27): 26-29, 34.

    SI L J, WANG X, WANG L L, et al. Research on anti-inflammatory and immune effects of quercetin and its partial mechanism[J]. China Med Her, 2021, 18(27): 26-29, 34.
    [27] 王蕊, 刘茜, 李丽. 槲皮素对系统性红斑狼疮模型小鼠肾脏的保护作用及对其免疫功能的影响研究[J]. 临床和实验医学杂志, 2021, 20(21): 2252-2256.

    WANG R, LIU Q, LI L. Protective effect of quercetin on the kidney of mice with systemic lupus erythematosus and its effect on its immune function[J]. J Clin Exp Med, 2021, 20(21): 2252-2256.
    [28] SINGH D, TANWAR H, JAYASHANKAR B, et al. Quercetin exhibits adjuvant activity by enhancing Th2 immune response in ovalbumin immunized mice[J]. Biomed Pharmacother, 2017, 90: 354-360. doi: 10.1016/j.biopha.2017.03.067
    [29] 蒋蕊, 考书娟, 徐小娟, 等. 槲皮素对免疫低下小鼠体液免疫功能的影响[J]. 青岛农业大学学报(自然科学版), 2011, 28(2): 118-120, 125.

    JIANG R, KAO S J, XU X J, et al. Effect of quercetin on humoral immunity function in immunosuppressive mice[J]. J Qingdao Agric Univ Nat Sci, 2011, 28(2): 118-120, 125.
    [30] BASU A, DAS A S, SHARMA M, et al. STAT3 and NF-κB are common targets for kaempferol-mediated attenuation of COX-2 expression in IL-6-induced macrophages and carrageenan-induced mouse paw edema[J]. Biochem Biophys Rep, 2017, 12: 54-61.
    [31] 陈伟明, 熊旭明. 异鼠李素对LPS诱导下THP-1细胞炎症因子释放的影响[J]. 广州医药, 2017, 48(5): 9-13.

    CHEN W M, XIONG X M. The influence of the isorhamnetion on the releasing of inflammatory factor cytokines of the THP-1 cells stimulated by LPS[J]. Guangzhou Med J, 2017, 48(5): 9-13.
    [32] 钱颖, 黄容容, 孙锐, 等. 人参皂苷Rh2对免疫低下小鼠的免疫调节作用[J]. 医药导报, 2018, 37(12): 1446-1454.

    QIAN Y, HUANG R R, SUN R, et al. Effect of ginsenoside Rh2 on immune regulation of immunocompromised mice[J]. Her Med, 2018, 37(12): 1446-1454.
    [33] VLAHOPOULOS S, ADAMAKI M, KHOURY N, et al. Roles of DNA repair enzyme OGG1 in innate immunity and its significance for lung cancer[J]. Pharmacol Ther, 2019, 194: 59-72. doi: 10.1016/j.pharmthera.2018.09.004
    [34] WEBSTER J D, VUCIC D. The balance of TNF mediated pathways regulates inflammatory cell death signaling in healthy and diseased tissues[J]. Front Cell Dev Biol, 2020, 8: 365. doi: 10.3389/fcell.2020.00365
    [35] 王燕, 朱晓庆, 谷新利, 等. 硒化甘草多糖对免疫抑制小鼠免疫功能的影响[J]. 饲料研究, 2023, 46(13): 65-69.

    WANG Y, ZHU X Q, GU X L, et al. Effect of selenide Glycyrrhiza polysaccharide on immune function of immunosuppressed mice[J]. Feed Res, 2023, 46(13): 65-69.
    [36] LI S W, HUANG J, YANG F, et al. High expression of PARD3 predicts poor prognosis in hepatocellular carcinoma[J]. Sci Rep, 2021, 11(1): 11078. doi: 10.1038/s41598-021-90507-w
    [37] 贺小威, 徐玲. 细胞周期相关基因CDKN2A、TP53、RB1和BRCA2在恶性肿瘤中的研究进展[J]. 现代肿瘤医学, 2018, 26(1): 153-157.

    HE X W, XU L. Advances on the role of cell cycle-related genes CDKN2A, TP53, RB1 and BRCA2 in malignancies[J]. J Mod Oncol, 2018, 26(1): 153-157.
    [38] 尹星星, 杨永晶, 陆杰, 等. 树莓多糖组分RPP-5的结构特征与免疫活性研究[J/OL]. 食品与发酵工业. https://doi.org/10.13995/j.cnki.11-1802/ts.035511.

    YIN X X, YANG Y J, LU J, et al. Structural characteristics and immunomodulatory activity of raspberry polysaccharide RPP-5[J]. Food Ferment Ind. https://doi.org/10.13995/j.cnki.11-1802/ts.035511.
    [39] 陈泽山, 邓鑫, 朱文琳, 等. 黄芪对肝癌的影响及潜在机制[J]. 中华中医药学刊, 2022, 40(11): 157-160.

    CHEN Z S, DENG X, ZHU W L, et al. Effect of huangqi(astragali Radix) on liver cancer and its potential mechanism[J]. Chin Arch Tradit Chin Med, 2022, 40(11): 157-160.
    [40] 李瑞, 王宇. 黄芪多糖的抗肿瘤作用机制研究进展[J]. 西部中医药, 2022, 35(9): 150-154.

    LI R, WANG Y. Research progress of anti-tumor mechanism of Astragalus polysaccharide[J]. West J Tradit Chin Med, 2022, 35(9): 150-154.
    [41] 彭剑岚, 朱永苹, 林寿宁, 等. 黄芪及其活性成分治疗胃癌的作用机制研究进展[J]. 中华中医药学刊, 2023, 41(4): 196-201.

    PENG J L, ZHU Y P, LIN S N, et al. Research progress on mechanism of huangqi(astragali Radix) and its active ingredients treating gastric cancer[J]. Chin Arch Tradit Chin Med, 2023, 41(4): 196-201.
    [42] LIBBY P, LICHTMAN A H, HANSSON G K. Immune effector mechanisms implicated in atherosclerosis: From mice to humans[J]. Immunity, 2013, 38(6): 1092-1104. doi: 10.1016/j.immuni.2013.06.009
    [43] WEBER C, ZERNECKE A, LIBBY P. The multifaceted contributions of leukocyte subsets to atherosclerosis: Lessons from mouse models[J]. Nat Rev Immunol, 2008, 8(10): 802-815. doi: 10.1038/nri2415
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  6
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-08
  • 网络出版日期:  2024-02-26
  • 发布日期:  2024-02-10

目录

    /

    返回文章
    返回