留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄芪-莪术-重楼配伍调控巨噬细胞极化对结直肠癌细胞增殖、迁移影响

杜利莉 王钢 梁研 赵凡 应佳辉 尹刚 唐德才 卞勇

杜利莉, 王钢, 梁研, 赵凡, 应佳辉, 尹刚, 唐德才, 卞勇. 黄芪-莪术-重楼配伍调控巨噬细胞极化对结直肠癌细胞增殖、迁移影响[J]. 南京中医药大学学报, 2024, 40(2): 137-144. doi: 10.14148/j.issn.1672-0482.2024.0137
引用本文: 杜利莉, 王钢, 梁研, 赵凡, 应佳辉, 尹刚, 唐德才, 卞勇. 黄芪-莪术-重楼配伍调控巨噬细胞极化对结直肠癌细胞增殖、迁移影响[J]. 南京中医药大学学报, 2024, 40(2): 137-144. doi: 10.14148/j.issn.1672-0482.2024.0137
DU Lili, WANG Gang, LIANG Yan, ZHAO Fan, YING Jiahui, YIN Gang, TANG Decai, BIAN Yong. Study on the Effect of Huangqi-Ezhu-Chonglou Combination on Proliferation and Migration of Colorectal Cancer Cells by Regulating Macrophage Polarization[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(2): 137-144. doi: 10.14148/j.issn.1672-0482.2024.0137
Citation: DU Lili, WANG Gang, LIANG Yan, ZHAO Fan, YING Jiahui, YIN Gang, TANG Decai, BIAN Yong. Study on the Effect of Huangqi-Ezhu-Chonglou Combination on Proliferation and Migration of Colorectal Cancer Cells by Regulating Macrophage Polarization[J]. Journal of Nanjing University of traditional Chinese Medicine, 2024, 40(2): 137-144. doi: 10.14148/j.issn.1672-0482.2024.0137

黄芪-莪术-重楼配伍调控巨噬细胞极化对结直肠癌细胞增殖、迁移影响

doi: 10.14148/j.issn.1672-0482.2024.0137
基金项目: 

国家自然科学基金面上项目 82274116

详细信息
    作者简介:

    杜利莉, 女, 助理实验师, E-mail: lldu@njucm.edu.cn

    通讯作者:

    卞勇, 男, 高级实验师, 主要从事药理学研究, E-mail: 150945@njucm.edu.cn

    唐德才, 男, 教授, 主要从事中药药性、配伍机制及临床应用方面的研究, E-mail: talknow@163.com

  • 中图分类号: R285.5

Study on the Effect of Huangqi-Ezhu-Chonglou Combination on Proliferation and Migration of Colorectal Cancer Cells by Regulating Macrophage Polarization

  • 摘要:   目的   探讨黄芪-莪术-重楼配伍对巨噬细胞极化的影响及其抑制结直肠癌细胞增殖、迁移的作用机制。   方法   使用佛波酯(Phorbol 12-myristate 13-acetate, PMA)和白细胞介素-4(Interleukin-4, IL-4)刺激THP-1细胞建立M2型巨噬细胞极化模型。实验分为M0组(PMA处理)、M2组(PMA+IL-4处理)、M2+黄芪-莪术-重楼组(PMA+IL-4+黄芪-莪术-重楼配伍处理)。CCK-8检测黄芪-莪术-重楼配伍冻干粉对巨噬细胞活力影响; qPCR和Western blot检测巨噬细胞极化标志物、谷氨酰胺酶(Glutaminase, GLS)mRNA和蛋白表达; ELISA检测细胞上清白细胞介素-10(Interleukin-10, IL-10)、转化生长因子-β(Transforming growth factor-β, TGF-β)、肿瘤坏死因子-α(Tumor necrosis factor-α, TNF-α)含量; CCK-8和Transwell实验检测黄芪-莪术-重楼配伍干预巨噬细胞的培养上清, 即条件培养基(Conditioned medium, CM), 对结直肠癌细胞HCT116增殖和迁移能力影响。   结果   与M0组相比, M2组IL-10、甘露糖受体(Mannose receptor, CD206)、精氨酸酶1(Arginase 1, ARG1)、GLS mRNA和蛋白表达显著升高(P<0.01, P<0.001), 巨噬细胞分泌IL-10、TGF-β水平显著升高(P<0.01, P<0.001);与M2组相比, M2+黄芪-莪术-重楼配伍组IL-10、CD206、ARG1、GLS mRNA和蛋白表达显著降低(P<0.05, P<0.01), TNF-α、诱导型一氧化氮合酶(Inducible nitric oxide synthase, iNOS) mRNA和蛋白表达显著升高(P<0.05, P<0.01,P<0.001), 白细胞介素-1β(Interleukin-1β, IL-1β) mRNA表达水平显著升高(P<0.01),细胞上清中IL-10、TGF-β水平显著降低(P<0.05, P<0.01), TNF-α水平显著升高(P<0.01)。CCK-8和Transwell结果显示, 与M0-CM组相比, M2-CM组促进HCT116细胞增殖和迁移(P<0.01, P<0.001), M2+黄芪-莪术-重楼-CM组较M2-CM组显著抑制HCT116细胞增殖并使细胞迁移数显著减少(P<0.01, P<0.001)。   结论   黄芪-莪术-重楼配伍可通过调控巨噬细胞极化, 抑制结直肠癌细胞增殖、迁移, 其机制可能与谷氨酰胺代谢关键酶GLS表达变化有关。

     

  • 图  1  不同浓度黄芪-莪术-重楼配伍对巨噬细胞活力影响

    注: 与空白对照组相比, * *P<0.01, * * *P<0.001。x±sn=4。

    Figure  1.  Effect of Huangqi-Ezhu-Chonglou combination on the viability of macrophages

    图  2  黄芪-莪术-重楼配伍对巨噬细胞IL-10、CD206、ARG1、TNF-α、iNOS、IL-1β mRNA水平的影响

    注: 与M0组相比, * *P<0.01, * * *P<0.001;与M2组相比, #P<0.05, ##P<0.01。x±sn=3。

    Figure  2.  Effect of Huangqi-Ezhu-Chonglou combination on the mRNA levels of IL-10, CD206, ARG1, TNF-α, iNOS, IL-1β in macrophage

    图  3  黄芪-莪术-重楼配伍对巨噬细胞IL-10、CD206、ARG1、TNF-α、iNOS蛋白表达水平的影响

    注: 与M0组相比, * *P<0.01, * * *P<0.001;与M2组相比, #P<0.05, ##P<0.01, ###P<0.001。x±sn=3。

    Figure  3.  Effect of Huangqi-Ezhu-Chonglou combination on the protein levels of IL-10, CD206, ARG1, TNF-α, iNOS in macrophage

    图  4  黄芪-莪术-重楼配伍对巨噬细胞上清液中IL-10、TGF-β、TNF-α水平的影响

    注: 与M0组相比, * *P<0.01, * * *P<0.001;与M2组相比, #P<0.05, ##P<0.01。x±sn=3。

    Figure  4.  Effect of Huangqi-Ezhu-Chonglou combination on the levels of IL-10, TGF-β and TNF-α in the supernatant of macrophage

    图  5  黄芪-莪术-重楼配伍抑制M2型巨噬细胞极化对结直肠癌细胞增殖、迁移的影响

    注: A.CCK-8检测HCT116细胞增殖能力, n=4;B.Transwell检测HCT116迁移能力(×100), n=3;与M0-CM组相比, * *P<0.01, * * *P<0.001;与M2-CM组相比, ##P<0.01, ###P<0.001。x±s

    Figure  5.  Effect of Huangqi-Ezhu-Chonglou combination on the proliferation and migration of colorectal cancer cells by inhibiting M2 macrophage polarization

    图  6  黄芪-莪术-重楼配伍对巨噬细胞GLS mRNA和蛋白表达水平的影响

    注: A.qPCR检测GLS mRNA表达水平; B.Western blot检测GLS蛋白表达水平; 与M0组相比, * *P<0.01, * * *P<0.001;与M2组相比, #P<0.05, ##P<0.01。x±sn=3。

    Figure  6.  Effect of Huangqi-Ezhu-Chonglou combination on the mRNA and protein levels of GLS in macrophage

    表  1  引物序列

    Table  1.   Primer sequences

    基因 序列(5'→3') 长度/bp
    IL-10 F: TGCCTTCAGCAGAGTGAAGA 20
    R: GGTCTTGGTTCTCAGCTTGG 20
    CD206 F: GATCCGACCCTTCCTTGACTAAT 23
    R: GCGATCCACACACGTTCATTAG 22
    ARG1 F: TGGACAGACTAGGAATTGGCA 21
    R: CCAGTCCGTCAACATCAAAACT 22
    TNF-α F: CGAGTGACAAGCCTGTAGCC 20
    R: GTTGACCTTGGTGTGTGGTAGG 22
    iNOS F: TCAGCTGTGCCTTCAACCC 19
    R: CCGAGGCCAAACACAGCGTA 20
    IL-1β F: AAGCTGAGGAAGATGCTGGT 20
    R: CGTTATCCCATGTGTCGAAG 20
    GLS F: ACCAAAGTTCCCTTCTGTCTTCA 23
    R: TGAAGTCACAACAATTGCTCCAG 23
    GAPDH F: GAAGGTCGGAGTCAACGGAT 20
    R: TGGAAGATGGTGATGGGATT 20
    下载: 导出CSV
  • [1] XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: Profiles, trends, and determinants[J]. Chin Med J, 2022, 135(5): 584-590. doi: 10.1097/CM9.0000000000002108
    [2] BOUTILIER A J, ELSAWA S F. Macrophage polarization states in the tumor microenvironment[J]. Int J Mol Sci, 2021, 22(13): 6995. doi: 10.3390/ijms22136995
    [3] WANG H, TIAN T, ZHANG J H. Tumor-associated macrophages (TAMs) in colorectal cancer (CRC): From mechanism to therapy and prognosis[J]. Int J Mol Sci, 2021, 22(16): 8470. doi: 10.3390/ijms22168470
    [4] CHERUKU S, RAO V, PANDEY R, et al. Tumor-associated macrophages employ immunoediting mechanisms in colorectal tumor progression: Current research in Macrophage repolarization immunotherapy[J]. Int Immunopharmacol, 2023, 116: 109569. doi: 10.1016/j.intimp.2022.109569
    [5] LI Y T, CHEN Z M, HAN J H, et al. Functional and therapeutic significance of tumor-associated macrophages in colorectal cancer[J]. Front Oncol, 2022, 12: 781233. doi: 10.3389/fonc.2022.781233
    [6] 唐德才. 活血化瘀药在抗肿瘤及转移中的运用思考[J]. 南京中医药大学学报, 2019, 35(1): 1-4. http://xb.njucm.edu.cn/article/id/zr20190101

    TANG D C. Thinking on the application of blood-activating and stasis-resolving medicine in anti-tumor and metastasis[J]. J Nanjing Univ Tradit Chin Med, 2019, 35(1): 1-4. http://xb.njucm.edu.cn/article/id/zr20190101
    [7] 梁研, 孙若岚, 刘夫艳, 等. 基于网络药理学和实验验证分析黄芪-莪术-蚤休角药配伍抗结直肠癌的作用机制[J]. 中国中药杂志, 2022, 47(3): 776-785.

    LIANG Y, SUN R L, LIU F Y, et al. Anti-colorectal cancer mechanism of Astragali Radix-Curcumae Rhizoma-Paridis Rhizoma based on network pharmacology and experimental verification[J]. China J Chin Mater Med, 2022, 47(3): 776-785.
    [8] 刘甜甜, 卞勇, 关汉卿, 等. 黄芪-莪术-重楼配伍降低血管内皮通透性抑制结肠癌转移作用的研究[J]. 南京中医药大学学报, 2022, 38(2): 115-121. doi: 10.14148/j.issn.1672-0482.2022.0115

    LIU T T, BIAN Y, GUAN H Q, et al. Study on the inhibitory effect of huangqi-ezhu-Chonglou combination on metastasis of colon cancer by reducing vascular endothelial permeability[J]. J Nanjing Univ Tradit Chin Med, 2022, 38(2): 115-121. doi: 10.14148/j.issn.1672-0482.2022.0115
    [9] 关汉卿, 刘甜甜, 梁研, 等. 黄芪-莪术-重楼配伍对结肠癌原位移植瘤模型裸鼠肿瘤及癌旁组织中侵袭性伪足相关蛋白表达的影响[J]. 中医杂志, 2021, 62(16): 1427-1433.

    GUAN H Q, LIU T T, LIANG Y, et al. Effect of huangqi-ezhu-Chonglou combination on the expression of invadopodia-related proteins in the tumors and paracancerous tissues of nude mice with colon cancer-derived orthotopic transplant model[J]. J Tradit Chin Med, 2021, 62(16): 1427-1433.
    [10] TANG Z Y, HU X R, AN C M, et al. The potential molecular pathways of Astragaloside-Ⅳ in colorectal cancer: A systematic review[J]. Biomed Pharmacother, 2023, 167: 115625. doi: 10.1016/j.biopha.2023.115625
    [11] PAUL S, SA G. Curcumin as an adjuvant to cancer immunotherapy[J]. Front Oncol, 2021, 11: 675923. doi: 10.3389/fonc.2021.675923
    [12] 张小力, 刘芹, 刘宝瑞. 重楼皂苷抗肿瘤及调节肿瘤免疫微环境研究进展[J]. 陕西中医, 2021, 42(11): 1640-1643. doi: 10.3969/j.issn.1000-7369.2021.11.033

    ZHANG X L, LIU Q, LIU B R. Advances in anti-tumor effects of Paris saponins[J]. Shaanxi J Tradit Chin Med, 2021, 42(11): 1640-1643. doi: 10.3969/j.issn.1000-7369.2021.11.033
    [13] GU J F, SUN R L, TANG D C, et al. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. suppresses growth and metastasis of colorectal cancer cells by inhibiting M2 macrophage polarization via a Sp1/ZFAS1/miR-153-3p/CCR5 regulatory axis[J]. Cell Biol Toxicol, 2022, 38(4): 679-697. doi: 10.1007/s10565-021-09679-w
    [14] 杨琦, 孙正, 朱亦邈, 等. 黄芪-莪术配伍调控EMT对结肠癌HT-29细胞增殖、迁移和侵袭能力的影响[J]. 中国中药杂志, 2023, 48(3): 736-743.

    YANG Q, SUN Z, ZHU Y M, et al. Astragali Radix-Curcumae Rhizoma combination inhibits proliferation, migration, and invasion of colon cancer HT-29 cells by regulating EMT[J]. China J Chin Mater Med, 2023, 48(3): 736-743.
    [15] 彭巍, 唐建清, 龚辉, 等. 健脾消癌方治疗对大肠癌肝转移患者临床疗效、血管生成因子及QLQ-c30评分的影响[J]. 四川中医, 2021, 39(8): 76-79.

    PENG W, TANG J Q, GONG H, et al. Effect of Jianpi xiaoai recipe on clinical efficacy, angiogenesis factors and QLQ-c30 score for patients with liver metastases of colorectal cancer[J]. J Sichuan Tradit Chin Med, 2021, 39(8): 76-79.
    [16] 郭文晖, 齐卓操, 关汉卿, 等. 黄芪-莪术配伍联合5-氟尿嘧啶对CT26. WT结肠癌原位移植瘤模型小鼠中Th17/Treg平衡及肿瘤相关mRNA和蛋白表达的影响[J]. 中国中药杂志, 2022, 47(1): 167-175.

    GUO W H, QI Z C, GUAN H Q, et al. Effect of Astragali Radix-Curcumae Rhizoma compatibility combined with 5-fluorouracil on Th17/Treg balance and tumor-related mRNA and protein expression in orthotopic xenograft model mice of CT26. WT colorectal carcinoma[J]. China J Chin Mater Med, 2022, 47(1): 167-175.
    [17] MOREIRA LOPES T C, MOSSER D M, GONÇALVES R. Macrophage polarization in intestinal inflammation and gut homeostasis[J]. Inflamm Res, 2020, 69(12): 1163-1172. doi: 10.1007/s00011-020-01398-y
    [18] VÄYRYNEN J P, HARUKI K, LAU M C, et al. The prognostic role of macrophage polarization in the colorectal cancer microenvironment[J]. Cancer Immunol Res, 2021, 9(1): 8-19. doi: 10.1158/2326-6066.CIR-20-0527
    [19] LIU F, RAN F, HE H Q, et al. Astragaloside Ⅳ exerts anti-tumor effect on murine colorectal cancer by re-educating tumor-associated macrophage[J]. Arch Immunol Ther Exp, 2020, 68(6): 33. doi: 10.1007/s00005-020-00598-y
    [20] YU J L, DENG H B, XU Z Y. Targeting macrophage priming by polyphyllin Ⅷ triggers anti-tumor immunity via STING-governed cytotoxic T-cell infiltration in lung cancer[J]. Sci Rep, 2020, 10(1): 21360. doi: 10.1038/s41598-020-77800-w
    [21] YANG Y, YANG Y, CHEN M L, et al. Injectable shear-thinning polylysine hydrogels for localized immunotherapy of gastric cancer through repolarization of tumor-associated macrophages[J]. Biomater Sci, 2021, 9(19): 6597-6608. doi: 10.1039/D1BM01053K
    [22] WONG C C, XU J Y, BIAN X Q, et al. In colorectal cancer cells with mutant KRAS, SLC25A22-mediated glutaminolysis reduces DNA demethylation to increase WNT signaling, stemness, and drug resistance[J]. Gastroenterology, 2020, 159(6): 2163-2180. e6. doi: 10.1053/j.gastro.2020.08.016
    [23] LEONE R D, ZHAO L, ENGLERT J M, et al. Glutamine blockade induces divergent metabolic programs to overcome tumor immune evasion[J]. Science, 2019, 366(6468): 1013-1021. doi: 10.1126/science.aav2588
    [24] WANG Y, WANG D, YANG L, et al. Metabolic reprogramming in the immunosuppression of tumor-associated macrophages[J]. Chin Med J, 2022, 135(20): 2405-2416. doi: 10.1097/CM9.0000000000002426
    [25] WANG J, MI S C, DING M Y, et al. Metabolism and polarization regulation of macrophages in the tumor microenvironment[J]. Cancer Lett, 2022, 543: 215766. doi: 10.1016/j.canlet.2022.215766
    [26] KIM G W, LEE D H, JEON Y H, et al. Glutamine synthetase as a therapeutic target for cancer treatment[J]. Int J Mol Sci, 2021, 22(4): 1701. doi: 10.3390/ijms22041701
    [27] FENG Y F, YANG X, HUANG J H, et al. Pharmacological inhibition of glutaminase 1 attenuates alkali-induced corneal neovascularization by modulating macrophages[J]. Oxid Med Cell Longev, 2022, 2022: 1106313.
    [28] MAI Z Y, ZHONG J, ZHANG J S, et al. Carrier-free immunotherapeutic nano-booster with dual synergistic effects based on glutaminase inhibition combined with photodynamic therapy[J/OL]. ACS Nano, 2023. doi: 10.1021/acsnano.2c11037.
    [29] BIAN Y, YIN G, WANG G, et al. Degradation of HIF-1α induced by curcumol blocks glutaminolysis and inhibits epithelial-mesenchymal transition and invasion in colorectal cancer cells[J]. Cell Biol Toxicol, 2023, 39(5): 1957-1978. doi: 10.1007/s10565-021-09681-2
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  15
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-13
  • 网络出版日期:  2024-02-26
  • 发布日期:  2024-02-10

目录

    /

    返回文章
    返回