留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of Glycyrrhizic Acid on Solubility, Pharmacokinetics and Liver Distribution of Osthole in Rats

YUN Fei KANG An SHAN Jin-jun ZHAO Xiao-li BI Xiao-lin DI Liu-qing

恽菲, 康安, 单进军, 赵晓丽, 毕肖林, 狄留庆. 甘草酸对蛇床子素溶解度及其在大鼠体内的药代动力学和肝脏分布的影响研究[J]. 南京中医药大学学报, 2023, 39(11): 1076-1085. doi: 10.14148/j.issn.1672-0482.2023.1076
引用本文: 恽菲, 康安, 单进军, 赵晓丽, 毕肖林, 狄留庆. 甘草酸对蛇床子素溶解度及其在大鼠体内的药代动力学和肝脏分布的影响研究[J]. 南京中医药大学学报, 2023, 39(11): 1076-1085. doi: 10.14148/j.issn.1672-0482.2023.1076
YUN Fei, KANG An, SHAN Jin-jun, ZHAO Xiao-li, BI Xiao-lin, DI Liu-qing. Effects of Glycyrrhizic Acid on Solubility, Pharmacokinetics and Liver Distribution of Osthole in Rats[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(11): 1076-1085. doi: 10.14148/j.issn.1672-0482.2023.1076
Citation: YUN Fei, KANG An, SHAN Jin-jun, ZHAO Xiao-li, BI Xiao-lin, DI Liu-qing. Effects of Glycyrrhizic Acid on Solubility, Pharmacokinetics and Liver Distribution of Osthole in Rats[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(11): 1076-1085. doi: 10.14148/j.issn.1672-0482.2023.1076

Effects of Glycyrrhizic Acid on Solubility, Pharmacokinetics and Liver Distribution of Osthole in Rats

doi: 10.14148/j.issn.1672-0482.2023.1076
More Information
    Corresponding author: 狄留庆, 男, 教授, 博士生导师, 主要从事中药高效给药系统设计与评价研究, E-mail: diliuqing@126.com
  • 摘要:   目的  研究甘草酸对蛇床子素溶解度和生物利用度的影响, 并探讨甘草酸影响蛇床子素溶解度、改善其药代动力学的作用机制。  方法  雄性SD大鼠单独口服蛇床子素(20 mg·kg-1)和配伍甘草酸(45 mg·kg-1)给药前后, 在特定时间点采集血液和肝脏样本并用LC-MS/MS方法测定蛇床子素浓度配伍前后的变化。通过X射线衍射(XRD)、傅立叶变换红外光谱(FT-IR)等物理表征, 研究甘草酸对蛇床子素溶解度的影响, 揭示甘草酸的增溶机理。采用Caco-2细胞单层模型, 研究蛇床子素在体外的吸收转运过程, 以及甘草酸及其活性代谢物甘草次酸(GC)对蛇床子素在Caco-2细胞吸收的影响。采用大鼠肠上皮细胞S9和肝细胞S9孵育系统, 探讨甘草酸和甘草次酸对蛇床子素体外代谢的影响。  结果  大鼠体内药代动力学结果表明甘草酸配伍蛇床子素可显著提高蛇床子素大鼠体内生物利用度。大鼠肝组织样本实验结果表明, 甘草酸增加蛇床子素在肝组织中的分布。体外溶解度实验研究发现, 甘草酸能显著提高蛇床子素在水中的溶解度, 推测可能的原因为蛇床子素结晶度的降低以及蛇床子素与甘草酸之间形成氢键所致。Caco-2细胞单层模型结果显示甘草酸和甘草次酸均不能促进蛇床子素的吸收, 体外孵育研究表明, 甘草酸与甘草次酸对蛇床子素的体外Ⅰ相代谢的影响较小。  结论  通过甘草酸和蛇床子素二者配伍机制的探讨, 配伍后蛇床子素生物利用度的提高和肝脏浓度的增加可能是由于甘草酸提高了蛇床子素的溶解度。对进一步研究以溶解度作为胃肠道吸收限速步骤的难溶性药物与天然增溶剂甘草酸配伍使用的合理性具有重要意义。

     

  • Figure  1.  Chemical structures of osthole (A), imperatorin (internal standard) (B), glycyrrhizic acid (C) and glycyrrhetinic acid (D)

    Figure  2.  (A) Solubility data of osthole singly and with glycyrrhizic acid (GL) at different concentrations at room temperature and 37 ℃. (B) Solubility data of osthole singly and with glycyrrhetinic acid (GC) at low, middle, high concentrations at 37 ℃

    Figure  3.  X-ray diffraction analysis of (a) osthole, (b) glycyrrhizic acid, (c) physical mixture, (d) lyophilized sample

    Figure  4.  Fourier transform infrared spectra of (a) osthole, (b) glycyrrhizic acid, (c) physical mixture, (d) lyophilized sample

    Figure  5.  Representative MRM chromatograms of (A) a blank rat liver sample (non-spiked), (B) a blank rat liver sample spiked with IS (180 ng·g-1)and osthole (100 ng·g-1), and (C) a rat liver sample obtained 10 h after oral administration of osthole (20 mg·kg-1)

    Note: 1. IS; 2. osthole

    Figure  6.  (A) The mean plasma concentration-time profiles of osthole in rats after oral administration of osthole (20 mg·kg-1) without and with glycyrrhizic acid (45 mg·kg-1) (B) The osthole concentration in the liver of rats at different time points after oral administration of osthole (20 mg·kg-1) without and with glycyrrhizic acid (45 mg·kg-1).

    Note: *P < 0.05 and * *P < 0.01 compared with the osthole group.x±s, n=6.

    Figure  7.  (A) Effects of glycyrrhizic acid (GL) and glycyrrhetinic acid (GC) at various concentrations on absorptive permeability parameter (Papp(A-B)) of osthole in Caco-2 cell in vitro model (B) Effects of glycyrrhizic acid and glycyrrhetinic acid at various concentration on secretory permeability parameter (Papp(B-A)) of osthole in Caco-2 cell in vitro model

    Note: *P < 0.05 and **P < 0.01 compared with the control group. x±s, n=6.

    Figure  8.  (A) Effects of glycyrrhizic acid (A1) and glycyrrhetinic acid (A2) at various concentrations on the metabolic reduction of osthole in the rat intestine S9. (B) Effects of glycyrrhizic acid (B1) and glycyrrhetinic acid (B2) at various concentrations on the metabolic reduction of osthole in the rat liver S9 fraction

    Note: *P < 0.05 and * *P < 0.01 compared with the ost group. x±s, n=6.

    Table  1.   The pharmacokinetic parameters of osthole in rats after oral administration of osthole (20 mg·kg-1) without and with glycyrrhizic acid (45 mg·kg-1) (x±s, n=6)

    Parameters Osthole Osthole+Glycyrrhizic acid
    Tmax/min 62.00±43.82 94.00±43.36
    Cmax/(ng·mL-1) 19.23±6.18 45.04±16.28*
    AUC(0-t)/(ng·min·mL-1) 8 247.09±1 627.12 14 099.57±3 657.95*
    AUC(0-∞)/(ng·min·mL-1) 9 069.39±1 708.37 14 522.62±3 698.25*
    MRT(0-t)/min 416.03±59.17 342.01±46.33
    T1/2/min 469.96±178.22 301.76±55.11
    CL/(L·min-1·kg-1) 2.27±0.40 1.43±0.30**
    Note: *P < 0.05, * *P < 0.01.
    下载: 导出CSV
  • [1] POLYAKOV NE, KHAN VK, TARABAN MB, et al. Complex of calcium receptor blocker nifedipine with glycyrrhizic acid[J]. J Phys Chem B, 2008, 112(14): 4435-4440. doi: 10.1021/jp076850j
    [2] POLYAKOV NE, LESHINA TV, SALAKHUTDINOV NF, et al. Host-guest complexes of carotenoids with beta-glycyrrhizic acid[J]. J Phys Chem B, 2006, 110(13): 6991-6998. doi: 10.1021/jp056038l
    [3] KORNIEVSKAYA VS, KRUPPA AI, POLYAKOV NE, et al. Effect of glycyrrhizic acid on lappaconitine phototransformation[J]. J Phys Chem B, 2007, 111(39): 11447-11452. doi: 10.1021/jp0739770
    [4] TANAKA M, TAKAHASHI M, KUWAHARA E, et al. Effect of glycyrrhizinate on dissolution behavior and rectal absorption of amphotericin B in rabbits[J]. Chem Pharm Bull, 1992, 40(6): 1559-1562. doi: 10.1248/cpb.40.1559
    [5] POLYAKOV NE, LESHINA TV, SALAKHUTDINOV NF, et al. Antioxidant and redox properties of supramolecular complexes of carotenoids with beta-glycyrrhizic acid[J]. Free Radic Biol Med, 2006, 40(10): 1804-1809. doi: 10.1016/j.freeradbiomed.2006.01.015
    [6] POLYAKOV NE, KHAN VK, TARABAN MB, et al. Complexation of lappaconitine with glycyrrhizic acid: Stability and reactivity studies[J]. J Phys Chem B, 2005, 109(51): 24526-24530. doi: 10.1021/jp053434v
    [7] LIAN QS. Advances in the study of chemical constituents and pharmacological actions of Cnidium monnieri (L. ) Cusson[J]. J Chin Med Mater, 2003, 26(2): 141-144.
    [8] YOU LS, FENG S, AN R, et al. Osthole: A promising lead compound for drug discovery from a traditional Chinese medicine (TCM)[J]. Nat Prod Commun, 2009, 4(2): 297-302.
    [9] HE YL, QU SY, WANG J, et al. Neuroprotective effects of osthole pretreatment against traumatic brain injury in rats[J]. Brain Res, 2012, 1433: 127-136. doi: 10.1016/j.brainres.2011.11.027
    [10] SUN F, XIE ML, ZHU LJ, et al. Inhibitory effect of osthole on alcohol-induced fatty liver in mice[J]. Dig Liver Dis, 2009, 41(2): 127-133. doi: 10.1016/j.dld.2008.01.011
    [11] SUN F, XIE ML, XUE J, et al. Osthol regulates hepatic PPAR alpha-mediated lipogenic gene expression in alcoholic fatty liver murine[J]. Phytomedicine, 2010, 17(8/9): 669-673.
    [12] DU R, XUE J, WANG HB, et al. Osthol ameliorates fat milk-induced fatty liver in mice by regulation of hepatic sterol regulatory element-binding protein-1c/2-mediated target gene expression[J]. Eur J Pharmacol, 2011, 666(1/2/3): 183-188.
    [13] YUAN ZT, XU HY, WANG K, et al. Determination of osthol and its metabolites in a phase Ⅰ reaction system and the Caco-2 cell model by HPLC-UV and LC-MS/MS[J]. J Pharm Biomed Anal, 2009, 49(5): 1226-1232. doi: 10.1016/j.jpba.2008.12.001
    [14] LI J, CHAN W. Investigation of the biotransformation of osthole by liquid chromatography/tandem mass spectrometry[J]. J Pharm Biomed Anal, 2013, 74: 156-161. doi: 10.1016/j.jpba.2012.10.018
    [15] LV X, WANG CY, HOU J, et al. Isolation and identification of metabolites of osthole in rats[J]. Xenobiotica, 2012, 42(11): 1120-1127. doi: 10.3109/00498254.2012.689887
    [16] OKAMOTO T, KOBAYASHI T, YOSHIDA S. Chemical aspects of coumarin compounds for the prevention of hepatocellular carcinomas[J]. Curr Med Chem Anticancer Agents, 2005, 5(1): 47-51. doi: 10.2174/1568011053352622
    [17] YUN F, KANG A, DI LQ, et al. Therapeutic compatibility effect of glycyrrhizin and osthole on the treatment of alcoholic fatty liver in rats[J]. J Nanjing Univ Tradit Chin Med, 2018, 34(5): 504-509.
    [18] JIN X, ZHANG ZH, LI SL, et al. A nanostructured liquid crystalline formulation of 20(S)-protopanaxadiol with improved oral absorption[J]. Fitoterapia, 2013, 84: 64-71. doi: 10.1016/j.fitote.2012.09.013
    [19] YUN F, KANG A, SHAN JJ, et al. A rapid and sensitive LC-MS/MS method for the determination of osthole in rat plasma: Application to pharmacokinetic study[J]. Biomed Chromatogr, 2013, 27(5): 676-680. doi: 10.1002/bmc.2850
    [20] ZHOU LM, WANG S, ZHANG Z, et al. Pharmacokinetic and pharmacodynamic interaction of Danshen-Gegen extract with warfarin and aspirin[J]. J Ethnopharmacol, 2012, 143(2): 648-655. doi: 10.1016/j.jep.2012.07.029
    [21] FONG YK, LI CR, WO SK, et al. In vitro and in situ evaluation of herb-drug interactions during intestinal metabolism and absorption of baicalein[J]. J Ethnopharmacol, 2012, 141(2): 742-753. doi: 10.1016/j.jep.2011.08.042
    [22] KORENAGA M, HIDAKA I, NISHINA S, et al. A glycyrrhizin-containing preparation reduces hepatic steatosis induced by hepatitis C virus protein and iron in mice[J]. Liver Int, 2011, 31(4): 552-560. doi: 10.1111/j.1478-3231.2011.02469.x
    [23] MAURYA SK, SRIVASTAVA AK. Glycyrrhizic acid attenuates the expression of HMG-CoA reductase mRNA in high fructose diet induced dyslipidemic hamsters[J]. Prague Med Rep, 2011, 112(1): 29-37.
    [24] PAOLINI M, POZZETTI L, SAPONE A, et al. Effect of licorice and glycyrrhizin on murine liver CYP-dependent monooxygenases[J]. Life Sci, 1998, 62(6): 571-582. doi: 10.1016/S0024-3205(97)01154-5
    [25] HOU YC, LIN SP, CHAO PD L. Liquorice reduced cyclosporine bioavailability by activating P-glycoprotein and CYP 3A[J]. Food Chem, 2012, 135(4): 2307-2312. doi: 10.1016/j.foodchem.2012.07.061
    [26] ZHAO K, DING M, CAO H, et al. In-vitro metabolism of glycyrrhetinic acid by human and rat liver microsomes and its interactions with six CYP substrates[J]. J Pharm Pharmacol, 2012, 64(10): 1445-1451. doi: 10.1111/j.2042-7158.2012.01516.x
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  103
  • HTML全文浏览量:  15
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-23
  • 网络出版日期:  2023-11-24
  • 发布日期:  2023-11-10

目录

    /

    返回文章
    返回