留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生当归和酒当归不同组分活血作用的差异性及其机制研究

毛雨洁 张少萌 郭双岩 史永洁 董高攀 闫慧娟 张来宾 吕洁丽

毛雨洁, 张少萌, 郭双岩, 史永洁, 董高攀, 闫慧娟, 张来宾, 吕洁丽. 生当归和酒当归不同组分活血作用的差异性及其机制研究[J]. 南京中医药大学学报, 2023, 39(10): 1015-1033. doi: 10.14148/j.issn.1672-0482.2023.1015
引用本文: 毛雨洁, 张少萌, 郭双岩, 史永洁, 董高攀, 闫慧娟, 张来宾, 吕洁丽. 生当归和酒当归不同组分活血作用的差异性及其机制研究[J]. 南京中医药大学学报, 2023, 39(10): 1015-1033. doi: 10.14148/j.issn.1672-0482.2023.1015
MAO Yu-jie, ZHANG Shao-meng, GUO Shuang-yan, SHI Yong-jie, DONG Gao-pan, YAN Hui-juan, ZHANG Lai-bin, LYU Jie-li. Studies on Differences and Mechanisms of Various Fractions Extracted from Angelicae Sinensis Radix and Wine-Processed Angelicae Sinensis Radix on Activating Blood Circulation[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(10): 1015-1033. doi: 10.14148/j.issn.1672-0482.2023.1015
Citation: MAO Yu-jie, ZHANG Shao-meng, GUO Shuang-yan, SHI Yong-jie, DONG Gao-pan, YAN Hui-juan, ZHANG Lai-bin, LYU Jie-li. Studies on Differences and Mechanisms of Various Fractions Extracted from Angelicae Sinensis Radix and Wine-Processed Angelicae Sinensis Radix on Activating Blood Circulation[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(10): 1015-1033. doi: 10.14148/j.issn.1672-0482.2023.1015

生当归和酒当归不同组分活血作用的差异性及其机制研究

doi: 10.14148/j.issn.1672-0482.2023.1015
基金项目: 

国家自然科学基金面上项目 81773898

河南省优秀青年科学基金项目 212300410066

详细信息
    作者简介:

    毛雨洁, 女, 硕士研究生, E-mail: 1152026003@qq.com

    通讯作者:

    张来宾, 男, 教授, 主要从事中药效应物质基础研究, E-mail: zhanglb@xxmu.edu.cn

    吕洁丽, 女,教授, 主要从事中药炮制机理及效应物质基础研究, E-mail: jielilv2009@xxmu.edu.cn

  • 中图分类号: R285.5

Studies on Differences and Mechanisms of Various Fractions Extracted from Angelicae Sinensis Radix and Wine-Processed Angelicae Sinensis Radix on Activating Blood Circulation

  • 摘要:   目的  基于网络药理学和动物实验开展生当归和酒当归不同组分活血作用的差异性研究, 并探讨其潜在机制。  方法  借助网络药理学方法, 从药物成分及疾病相关数据库预测当归的成分作用靶点及血瘀证(Blood stasis, BS)相关靶点, 根据拓扑特征值筛选关键靶点、核心成分后, 进行基因本体(Gene ontology, GO)功能及京都基因与基因组百科全书(Kyoto encyclopedia of genes and genomes, KEGG)通路富集分析; 采用皮下注射肾上腺素加冰水浴法诱导的急性血瘀大鼠模型开展生当归和酒当归不同组分活血作用的差异性研究, 并对预测的关键靶点及通路进行机制验证。  结果  网络药理学结果表明, 当归134个潜在活性成分含有1 062个相关靶点, 血瘀证相关靶点476个, 交集靶点145个。根据拓扑特征值筛选出当归治疗血瘀证的关键靶点15个, 与关键靶点关联的核心成分36个; 富集分析发现关键靶点主要与血管内皮生长因子产生(Vascular endotheial growth factor production)、一氧化氮生物合成过程的正调控(Positive regulation of nitric oxide biosynthetic process)、对缺氧的反应(Cellular response to hypoxia)等生物过程, 以及血管内皮生长因子(Vascular endothelial growth factor, VEGF)信号通路、磷脂酰肌醇-3-激酶/蛋白激酶B(Phosphatidylinositol 3-kinase/protein kinase B, PI3K/AKT)信号通路、肿瘤坏死因子(Tumor necrosis factor, TNF)信号通路等有关。动物实验结果显示: 与模型组相比, 酒当归正丁醇组分(WASB)具有较强的活血作用, 可显著改善血瘀模型大鼠的外观形态学和组织病理学表现, 降低脏器指数, 抑制炎性介质[一氧化氮(Nitric oxide, NO)、前列腺素E2(Prostaglandin E2, PGE2)、肿瘤坏死因子-α(Tumor necrosis factor-α, TNF-α)]的释放、抑制氧化应激, 显著下调VEGFA的蛋白表达, 抑制AKT、PI3K蛋白的磷酸化(P<0.05,P<0.01,P<0.001), 其他组分对急性血瘀模型大鼠活血作用不及该组分, 且生、酒当归同组分相比, 酒当归活性均强于生当归。  结论  当归酒炙后各组分的活血作用均较生当归同组分增强, 其效应增强的机制可能与下调VEGFA, p-AKT、p-PI3K的蛋白表达, 抑制VEGF和PI3K/AKT信号通路激活, 减少NO、TNF-α、PGE2等相关炎性介质的产生, 降低MDA水平、升高SOD活性发挥抑制氧化应激等有关。

     

  • 图  1  成分靶点与疾病靶点韦恩图

    Figure  1.  Venn Diagram of drug targets and disease targets

    图  2  共同靶点的PPI网络图

    Figure  2.  PPI network of common targets

    图  3  关键靶点图

    Figure  3.  Key targets

    图  4  GO功能富集分析图(前10)

    Figure  4.  Functional enrichment analysis diagram of GO (Top 10)

    图  5  KEGG通路富集分析(前10)

    Figure  5.  KEGG pathway enrichment analysis (Top 10)

    图  6  “当归-关键靶点-核心成分-疾病-信号通路”网络图

    注: 红色圆形代表中药当归; 绿色菱形代表关键靶点; 橙色三角形代表核心成分; 蓝色六边形代表疾病; 紫色V形代表信号通路

    Figure  6.  "Angelicae Sinensis Radix-key targets-core components-disease-signal pathways" network

    图  7  生、酒当归不同组分对血瘀模型大鼠体质量的影响

    注:BC-D. 二氯甲烷组分空白组; MC-D. 二氯甲烷组分模型组; AC-D. 二氯甲烷组分阿司匹林阳性组; ASDL. 生当归二氯甲烷组分低剂量组; ASDH. 生当归二氯甲烷组分高剂量组; WASDL. 酒当归二氯甲烷组分低剂量组; WASDH. 酒当归二氯甲烷组分高剂量组; BC-B. 正丁醇组分空白组; MC-B. 正丁醇组分模型组; AC-B. 正丁醇组分阿司匹林阳性组; ASBL. 生当归正丁醇组分低剂量组; ASBH. 生当归正丁醇组分高剂量组; WASBL. 酒当归正丁醇组分低剂量组; WASBH. 酒当归正丁醇组分高剂量组; BC-W. 水组分空白组; MC-W. 水组分模型组; AC-W. 水组分阿司匹林阳性组; ASWL. 生当归水组分低剂量组; ASWH. 生当归水组分高剂量组; WASWL. 酒当归水组分低剂量组; WASWH. 酒当归水组分高剂量组。与空白组相比, #P<0.05, ##P<0.01, ###P<0.001;与模型组相比, *P<0.05, **P<0.01, ***P<0.001。x±s, n=10。

    Figure  7.  Effects of different fractions from Angelicae Sinensis Radix and wine-processed Angelicae Sinensis Radix on body weight in blood stasis rats

    图  8  生、酒当归不同组分对血瘀模型大鼠舌面形态学的影响

    注:A. BC-D组; B. MC-D组; C. AC-D组; D. ASDL组; E. ASDH组; F. WASDL组; G. WASDH组; H. BC-B组; I. MC-B组; J. AC-B组; K. ASBL组; L. ASBH组; M. WASBL组; N. WASBH组; O. BC-W组; P. MC-W组; Q. AC-W组; R. ASWL组; S. ASWH组; T. WASWL组; U. WASWH组。x±s, n=10。

    Figure  8.  Effects of different fractions from Angelicae Sinensis Radix and wine-processed Angelicae Sinensis Radix on the morphology of tongue surface in blood stasis rats

    图  9  生、酒当归不同组分对血瘀模型大鼠舌面色度的影响

    注:与空白组相比, ##P<0.01, ###P<0.001;与模型组相比, *P<0.05, **P<0.01, ***P<0.001。x±s, n=10。

    Figure  9.  Effects of different fractions from Angelicae Sinensis Radix and wine-processed Angelicae Sinensis Radix on the tongue color in blood stasis rats

    图  10  生、酒当归不同组分对血瘀模型大鼠足底形态学的影响

    注:A. BC-D组; B. MC-D组; C. AC-D组; D. ASDL组; E. ASDH组; F. WASDL组; G. WASDH组; H. BC-B组; I. MC-B组; J. AC-B组; K. ASBL组; L. ASBH组; M. WASBL组; N. WASBH组; O. BC-W组; P. MC-W组; Q. AC-W组; R. ASWL组; S. ASWH组; T. WASWL组; U. WASWH组。x±s, n=10。

    Figure  10.  Effects of different fractions from Angelicae Sinensis Radix and wine-processed Angelicae Sinensis Radix on the morphology of plantar in blood stasis rats

    图  11  生、酒当归不同组分对血瘀模型大鼠足底色度的影响

    注:与空白组相比, ##P<0.01, ###P<0.001;与模型组相比, *P<0.05, **P<0.01, ***P<0.001。x±s, n=10。

    Figure  11.  Effects of different fractions from Angelicae Sinensis Radix and wine-processed Angelicae Sinensis Radix on the plantar color in blood stasis rats

    图  12  生、酒当归不同组分对血瘀模型大鼠肺指数的影响

    注:与空白组相比, ###P<0.001;与模型组相比, *P<0.05, **P<0.01, ***P<0.001。x±s, n=10。

    Figure  12.  Effects of different fractions from Angelicae Sinensis Radix and wine-processed Angelicae Sinensis Radix on the lung index in blood stasis rats

    图  13  生、酒当归不同组分对血瘀模型大鼠胸腺指数的影响

    注:与空白组相比, #P<0.05, ##P<0.01, ###P<0.001;与模型组相比, *P<0.05, **P<0.01, ***P<0.001。x±s, n=10。

    Figure  13.  Effects of different fractions from Angelicae Sinensis Radix and wine-processed Angelicae Sinensis Radix on the thymus index in blood stasis rats

    图  14  生、酒当归不同组分对血瘀模型大鼠肾脏指数的影响

    注:与空白组相比, ###P<0.001;与模型组相比, *P<0.05, **P<0.01, ***P<0.001。x±s, n=10。

    Figure  14.  Effects of different fractions from Angelicae Sinensis Radix and wine-processed Angelicae Sinensis Radix on renal index in blood stasis rats

    图  15  生、酒当归不同组分对血瘀模型大鼠心肌组织病理学的影响

    注:A. BC组; B. MC组; C. AC组; D. ASDL组; E. ASDH组; F. WASDL组; G. WASDH组; H. ASBL组; I. ASBH组; J. WASBL组; K. WASBH组; L. ASWL组; M. ASWH组; N. WASWL组; O. WASWH组。HE染色, ×400。

    Figure  15.  Effects of different fractions from Angelicae Sinensis Radix and wine-processed Angelicae Sinensis Radix on myocardial histopathology in blood stasis rats

    图  16  ASD和WASD对急性血瘀模型大鼠VEGFA、p-PI3K、p-AKT蛋白水平的影响

    注:与空白组相比, #P<0.05, ##P<0.01;与模型组相比, *P<0.05, **P<0.01, ***P<0.001。x±s, n=3。

    Figure  16.  Effects of ASD and WASD on the protein levels of VEGFA, p-PI3K and p-AKT in blood stasis rats

    图  17  ASB和WASB对急性血瘀模型大鼠VEGFA、p-PI3K、p-AKT蛋白水平的影响

    注:与空白组相比, #P<0.05, ;与模型组相比, *P<0.05, **P<0.01, ***P<0.001。x±s, n=3。

    Figure  17.  Effects of ASB and WASB on the protein levels of VEGFA, p-PI3K and p-AKT in blood stasis rats

    图  18  ASW和WASW对急性血瘀模型大鼠VEGFA、p-PI3K、p-AKT蛋白水平的影响

    注:与空白组相比, #P<0.05, ;与模型组相比, *P<0.05, **P<0.01, ***P<0.001。x±s, n=3。

    Figure  18.  Effects of ASW and WASW on the protein levels of VEGFA, p-PI3K and p-AKT in blood stasis rats

    图  19  各项指标热图

    Figure  19.  Thermogram of various indicators

    表  1  关键靶点网络拓扑学分析结果

    Table  1.   Key targets network topology analysis results

    Name Degree Betweenness Closeness
    ERBB2 59 299.596 162 6 0.613 733 906
    EGFR 75 677.252 263 0.658 986 175
    ALB 94 1 877.167 002 0.733 333 333
    TNF 91 1 248.800 356 0.718 592 965
    AKT1 92 1 589.650 581 0.718 592 965
    IL-1β 70 604.166 618 0.65
    PPARG 60 733.230 682 0.619 047 619
    HIF1A 68 590.471 496 5 0.632 743 363
    CXCL8 60 271.002 840 6 0.616 379 31
    PTGS2 59 444.407 225 8 0.600 840 336
    VEGFA 85 822.184 893 3 0.687 5
    IL-6 87 963.148 964 9 0.704 433 498
    NOS3 60 668.243 865 5 0.624 454 148
    HSP90AA1 64 1 174.613 989 0.621 739 13
    SRC 75 842.874 208 4 0.658 986 175
    下载: 导出CSV

    表  2  当归治疗血瘀证关键靶点对应的核心成分网络拓扑分析结果(Degree前15)

    Table  2.   Topological analysis results of core components related to the key targets for Angelicae Sinensis Radix in treatment of blood stasis (Degree Top 15)

    化合物名称 Degree Betweenness Closeness
    oplopandiol 6 1120.945 0.23222749
    洋川芎内酯C(senkyunolide C) 5 554.3458 0.20675105
    (1S)-2-O-E-feruloyl-1-(4-hydroxyphenyl)ethane-1,2-diol 5 629.10345 0.22374429
    11-angeloylsenkyunolide F 4 304.63852 0.21491228
    11(S), 16(R)-dihydroxy-octadeca-9Z,17-diene-12,14-diyn-1-yl acetate 4 451.5407 0.20940171
    2-methyl-5-decanone 3 372.23337 0.2
    酒渣碱(flazine) 3 327.21924 0.2139738
    黄芩苷(baicalin) 3 205.89545 0.20762712
    8-hydroxy-1-methoxy-9Z-heptadecene-4,6-diyn-3-one 3 306.69125 0.2139738
    heptadeca-1-en-9,10-epoxy-4,6-diyne-3,8-diol 3 188.24715 0.20502092
    p-hydroxyphenethyl trans-ferulate 3 162.02917 0.21212122
    阿魏酸松柏酯(coniferyl ferulate) 3 216.37267 0.20675105
    厚朴酚(magnolol) 3 221.31787 0.2033195
    10-angeloylbutylphthalide 3 398.09262 0.2
    欧当归内酯A(levistolide A) 2 140.97017 0.1835206
    下载: 导出CSV

    表  3  生、酒当归不同组分对急性血瘀模型大鼠血液中各项生化指标的影响(x±s, n=10)

    Table  3.   Effects of different fractions from Angelicae Sinensis Radix and wine-processed Angelicae Sinensis Radix on biochemical indexes in blood stasis rats (x±s, n=10)

    组别 剂量/(mg·kg-1) 炎性因子 氧化应激因子
    PGE2/(pg·mL-1) TNF-α/(pg·mL-1) NO/(μmol·mL-1) MDA/(nmol·mL-1) SOD/(U·mL-1)
    BC-D - 1.99±0.75 31.67±9.28 22.19±3.03 3.80±0.61 72.06±2.46
    MC-D - 44.91±15.97### 59.36±7.30### 56.81±9.61### 5.74±0.74### 67.40±0.93#
    AC-D 250 18.89±6.69*** 34.48±5.59*** 44.06±13.08 4.57±0.64* 69.39±1.36
    ASDL 250 35.28±12.09 31.03±7.07*** 49.52±7.38* 5.11±1.20 68.42±2.88
    ASDH 750 5.86±2.88*** 32.54±7.74*** 45.87±8.22*** 5.18±0.96 69.14±2.62
    WASDL 250 8.86±4.85*** 30.27±8.34*** 50.93±5.38 5.37±0.67 68.15±3.86
    WASDH 750 42.62±8.74 30.72±5.15*** 53.00±11.97 5.01±0.43 72.01±1.23
    BC-B - 2.58±1.43 36.87±5.44 24.44±7.69 3.74±0.65 74.03±1.92
    MC-B - 78.07±6.43### 63.36±5.71### 52.43±15.01### 6.92±0.90### 67.04±1.65###
    AC-B 250 20.66±11.40*** 45.45±6.94*** 45.89±8.39 4.06±0.40*** 68.95±2.04
    ASBL 250 6.27±3.05*** 48.83±7.26** 38.78±7.29 5.47±0.39*** 69.43±3.89
    ASBH 750 14.17±4.23*** 47.38±5.48*** 34.60±10.23* 6.20±0.32 70.73±2.70*
    WASBL 250 47.46±6.41*** 44.86±5.37*** 35.51±7.06* 5.78±0.34** 70.12±3.28
    WASBH 750 10.77±5.08*** 40.50±6.33*** 40.13±7.26 5.74±0.42** 71.20±1.73*
    BC-W - 3.97±2.31 25.93±3.71 28.88±7.61 3.27±0.50 79.21±1.34
    MC-W - 65.90±12.22### 35.33±5.19# 58.70±9.61### 5.12±0.53### 73.81±1.56###
    AC-W 250 10.31±2.76*** 24.70±6.16** 56.71±9.42 3.17±0.46*** 74.26±0.83
    ASWL 250 9.77±3.76*** 25.70±6.76* 45.34±5.45 4.67±0.55 75.64±1.68
    ASWH 750 52.33±7.30 25.31±4.21* 45.88±7.18 4.35±0.56 74.93±1.74
    WASWL 250 9.34±6.38*** 24.70±4.29* 44.97±6.88 4.34±0.37* 77.03±1.52**
    WASWH 750 21.05±11.38*** 23.94±5.74** 44.89±5.54 4.24±0.45* 77.67±1.78***
    注: 与空白组比较, #P<0.05, ###P<0.001;与模型组比较, *P<0.05, **P<0.01, ***P<0.001。
    下载: 导出CSV
  • [1] 吴承玉. 血瘀证的研究发展脉络与评述[J]. 南京中医药大学学报, 2004, 20(3): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-NJZY200403002.htm

    WU CY. On development of researches on blood stasis[J]. J Nanjing Univ Tradit Chin Med, 2004, 20(3): 133-136. https://www.cnki.com.cn/Article/CJFDTOTAL-NJZY200403002.htm
    [2] 吴颢昕. 《内经》论瘀血的治法及其影响[J]. 南京中医药大学学报(自然科学版), 2001, 17(6): 346-348. https://www.cnki.com.cn/Article/CJFDTOTAL-NJZY200106004.htm

    WU HX. Treatment of stasis of blood in canon of medicine and its impact[J]. J Nanjing Univ Tradit Chin Med: Nat Sci Edit, 2001, 17(6): 346-348. https://www.cnki.com.cn/Article/CJFDTOTAL-NJZY200106004.htm
    [3] 吕成龙, 李会会, 史永洁, 等. 中药当归现代研究进展及其质量标志物的预测分析[J]. 中国中药杂志, 2022, 47(19): 5140-5157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202219004.htm

    LYU CL, LI HH, SHI YJ, et al. Research progress of Angelicae Sinensis Radix and predictive analysis on its quality markers[J]. China J Chin Mater Med, 2022, 47(19): 5140-5157. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202219004.htm
    [4] 王祝举, 唐力英, 宋秉生, 等. 当归炮制历史沿革研究[J]. 中国实验方剂学杂志, 2010, 16(3): 135-138. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201003049.htm

    WANG ZJ, TANG LY, SONG BS, et al. Studies of traditional Chinese pharmaceutical processes for Radix angelicae sinensis in medical history[J]. Chin J Exp Tradit Med Formulae, 2010, 16(3): 135-138. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201003049.htm
    [5] 王莹, 孙嘉辰, 李霞, 等. 基于建立成分活性权重函数的当归酒炙工艺评价研究[J]. 中草药, 2022, 53(10): 3014-3021. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202210009.htm

    WANG Y, SUN JC, LI X, et al. Quantitative evaluation of Angelicae Sinensis Radix processed with yellow wine based on composition-activity weight function method[J]. Chin Tradit Herb Drugs, 2022, 53(10): 3014-3021. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202210009.htm
    [6] ZHONG LJ, HUA YL, JI P, et al. Evaluation of the anti-inflammatory effects of volatile oils from processed products of Angelica sinensis radix by GC-MS-based metabolomics[J]. J Ethnopharmacol, 2016, 191: 195-205. doi: 10.1016/j.jep.2016.06.027
    [7] 陶益, 陈西, 李伟东, 等. 当归炮制品9种化学成分的比较研究[J]. 中药新药与临床药理, 2017, 28(1): 88-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXY201701019.htm

    TAO Y, CHEN X, LI WD, et al. Comparative analysis of 9 constituents in processed products of Radix angelicae Sinensis[J]. Tradit Chin Drug Res Clin Pharmacol, 2017, 28(1): 88-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXY201701019.htm
    [8] 钟宇晨, 匡海学, 王秋红. 酒炙前后当归多糖对血瘀证大鼠的作用研究及机制探讨[J]. 中药新药与临床药理, 2020, 31(5): 495-501. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXY202005002.htm

    ZHONG YC, KUANG HX, WANG QH. Study on effect and mechanism of Angelica polysaccharide on blood stasis rats before and after wine-broiled[J]. Tradit Chin Drug Res Clin Pharmacol, 2020, 31(5): 495-501. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXY202005002.htm
    [9] 曹宁宁, 李市荣, 王清果, 等. 基于网络药理学整合体内实验探究脉络舒通丸抗血栓性浅静脉炎的作用机制[J]. 中草药, 2023, 54(6): 1860-1869. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202306018.htm

    CAO NN, LI SR, WANG QG, et al. Mechanism of Mailuo Shutong Pills in treatment of superficial thrombophlebitis based on network pharmacology and experimental verification in vivo[J]. Chin Tradit Herb Drugs, 2023, 54(6): 1860-1869. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202306018.htm
    [10] ZHAO J, LYU C, WU QL, et al. Computational systems pharmacology reveals an antiplatelet and neuroprotective mechanism of Deng-Zhan-Xi-Xin injection in the treatment of ischemic stroke[J]. Pharmacol Res, 2019, 147: 104365. doi: 10.1016/j.phrs.2019.104365
    [11] 王子怡, 王鑫, 张岱岩, 等. 中医药网络药理学: 《指南》引领下的新时代发展[J]. 中国中药杂志, 2022, 47(1): 7-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202201002.htm

    WANG ZY, WANG X, ZHANG DY, et al. Traditional Chinese medicine network pharmacology: Development in new era under guidance of network pharmacology evaluation method guidance[J]. China J Chin Mater Med, 2022, 47(1): 7-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202201002.htm
    [12] ZHOU WA, LAI XX, WANG X, et al. Network pharmacology to explore the anti-inflammatory mechanism of Xuebijing in the treatment of sepsis[J]. Phytomedicine, 2021, 85: 153543. doi: 10.1016/j.phymed.2021.153543
    [13] 何倩, 杨凯琳, 吴欣艳, 等. 基于网络药理学、含量测定及活性评价探讨沙棘叶质量标志物及其潜在药用价值[J/OL]. 中国中药杂志, 2023. http://10.19540/j.cnki.cjcmm.20230616.201.

    HE Q, YANG KL, WU XY, et al. Exploration of sea buckthorn leaves quality markers and their potential medicinal value based on network pharmacology, content determination and activity evaluation[J/OL]. Chin J Chin Mater Med, 2023. http://10.19540/j.cnki.cjcmm.20230616.201.
    [14] 李伟霞, 黄美艳, 唐于平, 等. 大鼠急性血瘀模型造模方法的研究与评价[J]. 中国药理学通报, 2011, 27(12): 1761-1765. https://www.cnki.com.cn/Article/CJFDTOTAL-YAOL201112032.htm

    LI WX, HUANG MY, TANG YP, et al. Establishment and optimization of acute blood stasis rat model[J]. Chin Pharmacol Bull, 2011, 27(12): 1761-1765. https://www.cnki.com.cn/Article/CJFDTOTAL-YAOL201112032.htm
    [15] 李莎莎, 肖雪, 王跃生, 等. 血瘀证与活血化瘀研究进展[J]. 河南中医学院学报, 2009, 24(1): 102-104. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZK200901051.htm

    LI SS, XIAO X, WANG YS, et al. Progression of research on syndrome of blood stasis and the treatment of promoting blood circulation to remove blood stasis[J]. J Henan Univ Chin Med, 2009, 24(1): 102-104. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZK200901051.htm
    [16] XIE QX, ZHANG LL, XIE L, et al. Z-ligustilide: A review of its pharmacokinetics and pharmacology[J]. Phytother Res, 2020, 34(8): 1966-1991.
    [17] ZHOU YN, GUO XQ, CHEN WM, et al. Angelica polysaccharide mitigates lipopolysaccharide-evoked inflammatory injury by regulating microRNA-10a in neuronal cell line HT22[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 3194-3201.
    [18] PAN H, ZHU LL. RETRACTED: Angelica sinensis polysaccharide protects rat cardiomyocytes H9c2 from hypoxia-induced injury by down-regulation of microRNA-22[J]. Biomed Pharmacother, 2018, 106: 225-231.
    [19] 张来宾, 吕洁丽, 陈红丽, 等. 当归中苯酞类成分及其药理作用研究进展[J]. 中国中药杂志, 2016, 41(2): 167-176. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201602003.htm

    ZHANG LB, LYU JL, CHEN HL, et al. Research progress of structures and pharmacological activities of phthalides from Angelica sinensis[J]. China J Chin Mater Med, 2016, 41(2): 167-176. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201602003.htm
    [20] LIU XT, ZHANG MJ, LI YJ, et al. Effects of levistilide A on hemorheology and endothelial cell injury in rats with blood stasis[J]. Evid Based Complement Alternat Med, 2021, 2021: 6595383.
    [21] ZHANG LB, LYU JL. A new ferulic acid derivative and other anticoagulant compounds from Angelica sinensis[J]. Chem Nat Compd, 2018, 54(1): 13-17.
    [22] 蔡娟娟, 黄静, 苏玲玲, 等. 黄芩苷对血栓栓塞致急性肺栓塞大鼠NF-κB信号通路抑制作用的实验研究[J]. 中国中医药科技, 2022, 29(3): 378-383. https://www.cnki.com.cn/Article/CJFDTOTAL-TJYY202203009.htm

    CAI JJ, HUANG J, SU LL, et al. Inhibition effect of baicalin on NF-κB signal pathway in acute pulmonary embolism rats induced by thromboembolism[J]. Chin J Tradit Med Sci Technol, 2022, 29(3): 378-383. https://www.cnki.com.cn/Article/CJFDTOTAL-TJYY202203009.htm
    [23] 辛来运, 路迎冬, 高嘉良, 等. 黄芩苷防治动脉粥样硬化作用机制的研究进展[J]. 中华中医药学刊, 2022, 40(3): 77-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYHS202203018.htm

    XIN LY, LU YD, GAO JL, et al. Research progress on prevention and treatment of atherosclerosis with baicalin[J]. Chin Arch Tradit Chin Med, 2022, 40(3): 77-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYHS202203018.htm
    [24] YUAN Y, ZHOU XC, WANG YY, et al. Cardiovascular modulating effects of magnolol and honokiol, two polyphenolic compounds from traditional Chinese medicine-Magnolia officinalis[J]. Curr Drug Targets, 2020, 21(6): 559-572.
    [25] NICHOLSON KM, ANDERSON NG. The protein kinase B/Akt signalling pathway in human malignancy[J]. Cell Signal, 2002, 14(5): 381-395.
    [26] CHANDAN G, KUMAR C, CHIBBER P, et al. Evaluation of analgesic and anti-inflammatory activities and molecular docking analysis of steroidal lactones from Datura stramonium L[J]. Phytomedicine, 2021, 89: 153621.
    [27] ZHOU YQ, ZHOU HX, HUA L, et al. Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis[J]. Free Radic Biol Med, 2021, 171: 55-68.
    [28] BADIMON L, VILAHUR G, ROCCA B, et al. The key contribution of platelet and vascular arachidonic acid metabolism to the pathophysiology of atherothrombosis[J]. Cardiovasc Res, 2021, 117(9): 2001-2015.
    [29] 谈晓莹, 李丹, 刘培, 等. 基于网络药理学及斑马鱼模型的瓜蒌薤白半夏汤干预慢性阻塞性肺疾病的作用机制研究[J]. 中草药, 2021, 52(17): 5233-5243. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202117015.htm

    TAN XY, LI D, LIU P, et al. Mechanism of Gualou Xiebai Banxia Decoction on chronic obstructive pulmonary disease based on network pharmacology and zebrafish model[J]. Chin Tradit Herb Drugs, 2021, 52(17): 5233-5243. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202117015.htm
    [30] 罗则华, 杜倩, 奚鑫, 等. 基于网络药理学的淫羊藿抗疲劳作用机制研究[J]. 中草药, 2020, 51(11): 2997-3004. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202011018.htm

    LUO ZH, DU Q, XI X, et al. Mechanism of anti-fatigue of Epimedii Folium based on network pharmacology[J]. Chin Tradit Herb Drugs, 2020, 51(11): 2997-3004. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202011018.htm
    [31] LI GL, TAO L, WU H. Effects of hypoxia-inducible factor 1 (HIF-1) signaling pathway on acute ischemic stroke[J]. Comput Math Methods Med, 2022, 2022: 1860925.
    [32] YANG X, ZHANG YS, GENG KY, et al. Sirt3 protects against ischemic stroke injury by regulating HIF-1α/VEGF signaling and blood-brain barrier integrity[J]. Cell Mol Neurobiol, 2021, 41(6): 1203-1215.
    [33] 王建湘, 廖杨, 易琼, 等. 柴胡陷胸汤调控HIF-1α/VEGF信号通路对动脉粥样硬化大鼠血管新生的影响[J]. 中药药理与临床, 2023, 39(2): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYL202302004.htm

    WANG JX, LIAO Y, YI Q, et al. Effect of Chaihu Xianxiong Decoction on angiogenesis in atherosclerotic rats by regulating HIF-1α/VEGF signal pathway[J]. Pharmacol Clin Chin Mater Med, 2023, 39(2): 9-13. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYL202302004.htm
    [34] 杜红丽, 张晨宇, 赵清. 黄芩素通过调节HIF-1α/VEGF信号通路抑制类风湿关节炎大鼠的炎症反应和病理性血管生成[J]. 中国病理生理杂志, 2022, 38(12): 2213-2219. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBLS202212012.htm

    DU HL, ZHANG CY, ZHAO Q. Baicalein inhibits inflammatory response and pathological angiogenesis in rheumatoid arthritis rats by regulating HIF-1α/VEGF signaling pathway[J]. Chin J Pathophysiol, 2022, 38(12): 2213-2219. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBLS202212012.htm
    [35] 周曼丽, 赵彦禛, 俞赟丰, 等. 中医药调控动脉粥样硬化相关信号通路的研究进展[J]. 中国实验方剂学杂志, 2022, 28(15): 232-239. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202215029.htm

    ZHOU ML, ZHAO YZ, YU YF, et al. Chinese medicine regulates atherosclerosis-related signaling pathway: A review[J]. Chin J Exp Tradit Med Formulae, 2022, 28(15): 232-239. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202215029.htm
    [36] WU Q, MAO ZG, LIU J, et al. Ligustilide attenuates ischemia reperfusion-induced hippocampal neuronal apoptosis via activating the PI3K/akt pathway[J]. Front Pharmacol, 2020, 11: 979.
    [37] LIU YP, HONG K, WENG WJ, et al. Association of vascular endothelial growth factor (VEGF) protein levels and gene polymorphism with the risk of chronic kidney disease[J]. Libyan J Med, 2023, 18(1): 2156675.
    [38] 戴国梁, 贡涛, 李豫, 等. 五味子乙素通过VEGF/PI3K/Akt信号通路抑制人结肠癌细胞SW620的增殖和迁移[J]. 中国药学杂志, 2018, 53(14): 1186-1191. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYX201814007.htm

    DAI GL, GONG T, LI Y, et al. Effect of schisandrin B on proliferation and migration of human SW620 colon cancer cell via VEGF/PI3K/akt signaling pathway[J]. Chin Pharm J, 2018, 53(14): 1186-1191. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYX201814007.htm
    [39] 张亚奇, 秦灵灵, 白惠中, 等. 基于网络药理学和实验验证探讨糖痹康颗粒治疗糖尿病周围神经病变的分子机制[J]. 中国实验方剂学杂志, 2023, 29(9): 81-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202309010.htm

    ZHANG YQ, QIN LL, BAI HZ, et al. Molecular mechanism of tangbikang granules against diabetic peripheral neuropathy: Based on network pharmacology and experimental verification[J]. Chin J Exp Tradit Med Formulae, 2023, 29(9): 81-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202309010.htm
    [40] 石芸, 徐长丽, 金俊杰, 等. "逢子必炒"炮制理论的传统认识与现代研究进展[J]. 中草药, 2022, 53(7): 2227-2236. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202207032.htm

    SHI Y, XU CL, JIN JJ, et al. Traditional understanding and modern research progress on processing theory of "seed drugs be stir-fried"[J]. Chin Tradit Herb Drugs, 2022, 53(7): 2227-2236. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202207032.htm
    [41] ZHANG LB, LYU JL, LIU JW. Phthalide derivatives with anticoagulation activities from Angelica sinensis[J]. J Nat Prod, 2016, 79(7): 1857-1861.
    [42] LYU JL, ZHANG LB, GUO LM. Phthalide dimers from Angelica sinensis and their COX-2 inhibition activity[J]. Fitoterapia, 2018, 129: 102-107.
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  41
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-17
  • 网络出版日期:  2023-11-10
  • 发布日期:  2023-10-10

目录

    /

    返回文章
    返回