留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自身免疫性疾病与肠道菌群互作及中药干预研究进展

刘盼茹 郭玺 唐乙朝 王海丹 郭云柯 殷爱玲 李永明 周伟

刘盼茹, 郭玺, 唐乙朝, 王海丹, 郭云柯, 殷爱玲, 李永明, 周伟. 自身免疫性疾病与肠道菌群互作及中药干预研究进展[J]. 南京中医药大学学报, 2023, 39(7): 693-700. doi: 10.14148/j.issn.1672-0482.2023.0693
引用本文: 刘盼茹, 郭玺, 唐乙朝, 王海丹, 郭云柯, 殷爱玲, 李永明, 周伟. 自身免疫性疾病与肠道菌群互作及中药干预研究进展[J]. 南京中医药大学学报, 2023, 39(7): 693-700. doi: 10.14148/j.issn.1672-0482.2023.0693
LIU Pan-ru, GUO Xi, TANG Yi-zhao, WANG Hai-dan, GUO Yun-ke, YIN Ai-ling, LI Yong-ming, ZHOU Wei. Research on the Interaction Between Autoimmune Diseases and Gut Microbiota and Regulation of Chinese Herbal Medicines[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(7): 693-700. doi: 10.14148/j.issn.1672-0482.2023.0693
Citation: LIU Pan-ru, GUO Xi, TANG Yi-zhao, WANG Hai-dan, GUO Yun-ke, YIN Ai-ling, LI Yong-ming, ZHOU Wei. Research on the Interaction Between Autoimmune Diseases and Gut Microbiota and Regulation of Chinese Herbal Medicines[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(7): 693-700. doi: 10.14148/j.issn.1672-0482.2023.0693

自身免疫性疾病与肠道菌群互作及中药干预研究进展

doi: 10.14148/j.issn.1672-0482.2023.0693
基金项目: 

国家自然科学基金面上项目 82274071

详细信息
    作者简介:

    刘盼茹, 女, 硕士研究生, E-mail: 13281818362@163.com

    通讯作者:

    周伟, 男, 副教授,主要从事肠道菌群紊乱与中药调控研究,E-mail: wzhou@cpu.edu.cn

  • 中图分类号: R285.5

Research on the Interaction Between Autoimmune Diseases and Gut Microbiota and Regulation of Chinese Herbal Medicines

  • 摘要: 自身免疫性疾病是一大类以自身耐受破坏、免疫细胞异常激活、自身抗体产生和大量炎症因子释放, 进而产生多系统损伤为主要特征的疾病。肠道菌群与宿主健康息息相关, 菌群生态失调已被确认与许多自身免疫性疾病的病理生理学有关, 包括类风湿性关节炎、溃疡性结肠炎、自身免疫性甲状腺炎等。中药能改变肠道菌群的组成, 二者之间有紧密联系, 研究发现, 中药可通过重塑肠道微生态结构而发挥治疗作用。该文针对肠道菌群如何影响自身免疫疾病的发生和发展, 结合中药对肠道菌群调节作用的研究, 针对中药调节肠道菌群与其发挥疾病防治效果之间的相关性, 以期为中药的临床应用及药理学研究提供一定的参考依据。

     

  • 图  1  肠道菌群与自身免疫性疾病关系示意图

    注: Haemophilus.嗜血杆菌; Lactobacillus salivarius.唾液乳杆菌; Prevotella.普雷沃氏菌属; Bacteroides.拟杆菌属; Firmicutes.厚壁菌; Actinomycete. 放线菌; Lactobacillus.乳酸杆菌; Desulfotomacvlum.脱硫菌; Proteus.变形杆菌; Bifidobacterium.双歧杆菌; Lachnospira.毛螺菌属; Roseburia.罗氏菌属; Devosia.沃斯菌属; Enterococcus.肠球菌; Streptococcus.链球菌; klebsiella.克雷伯氏菌; Ruminococcus.瘤胃球菌; SCFAs.短链脂肪酸; TPO-Ab.甲状腺过氧化物酶抗体; Tg-Ab.甲状腺球蛋白抗体

    Figure  1.  Schematic representation of the association between gut microbiota and autoimmune diseases

    表  1  中药活性成分调节肠道菌群治疗RA

    Table  1.   Modulation of gut microbiota by active ingredients in Chinese medicine for RA

    中药 菌群变化 相应的指标变化 作用机制
    人参皂苷Rg2[17] P. disasonis ZO-1, Occludin↑, LPS↓, Th17↓, Treg↑ 促进P. disasonis的生长, 改变Th17/Treg细胞平衡, 中和致病性自身抗体和改善肠道通透性
    朝鲜白术(Nakai)[22] Proteobacteria, Verrucomibia↓
    调节AkkermansiaAllobaculumAnaerovoraxCoriobacteriaceae_UCG-002、LachnoclostridiumRuminantium_groupErysipelotricaceaeMuribaculaceae等菌群
    滑膜浸润和血管增殖减轻, TNF-α、IL-1、IL-1β、IL-2、IL-6、hs-CRP水平↓ 可能与下调炎症因子、改善肠道菌群和SCFAs平衡有关
    棘球蚴总多糖和糖苷[23] Proteobacteria、Acidobacteria和Gemmatimonadetes↑, Tenericutes、Fusobacteria、Kiritimatiellaeota和Patescibacteria↓ 抑制关节炎, 血清中IL-1β和TNF-α↓ 可能是通过调节肠道菌群来调节代谢产物的产生
    紫檀芪[24] HelicobacterDesulfovibrioLachnospiraceaeMucispirillium MPO、IgG1、IgG2A、TNF-α、COX-2、NF-κB↓, IL-10↑ 通过降低炎症因子和介质的水平显著抑制炎症
    鸡矢藤提取物[25] DesulfotomacvlumSpirochaeteMucilaginosaHelicobacterpyloriLachnospiraceae TNF-α、IL-1β、IL-6、IL-7和IL-23↓ 直接抑制循环血液中促炎细胞因子和介质的产生
    铁总线莲三萜皂苷[26] Firmicutes和Actinobacteria的G-细菌↓, G+细菌↑, 达到G-/G+比率平衡 总SCFAs↓ 可能通过平衡肠道微生物群和SCFAs代谢来缓解DMARDs的胃肠道损害副作用
    当归四逆汤[27] g-Norank-f-Eubacterium-coprostanoligenes-groupg-Lactobacillus↓, g-Bacteroides 滑膜浸润和血管增殖减轻, SCFAs↓ 通过影响肠道微生物群及其代谢物
    下载: 导出CSV

    表  2  中药活性成分调节肠道菌群治疗UC

    Table  2.   Modulation of gut microbiota by active ingredients in Chinese medicine for UC

    中药成分 菌群变化 相应的指标变化 作用机制
    白头翁皂苷[37] norank_F_Muribaculaceaenorank_F_norank_O_Clostridia_UCG-014↑, 有害拟杆菌↓ 结肠黏膜结构和病理炎症改善 可能与有益菌的显著增加以及有害菌的减少有关
    柴胡皂苷-d[38] LachnospiraceaeRuminiclostridium_5、MucispirillumRuminiclostridium_9、RuminiclostridiumOscillibacterBlautiaAnaerotruncus↑, Ruminiclostridium-6↓ 结肠病理炎症改善, IL-10、ZO-1、Occludin、Claudin-1↑, IL-6、IL-8、IL-1β、TNF-α↓ 通过抑制NF-κB活化和调节小鼠肠道微生物群来改善葡聚糖硫酸钠诱导的结肠炎
    地黄多糖[39] FirmicutesLactobacillus↑, Bacteroides IL-10、ZO-1、Occludin、Claudin-1↑, IL-6、IL-1β、TNF-α↓, 抑制NF-κB通路 可能通过恢复紊乱的肠道微生物组和微生物群落代谢物来介导, 从而增强肠上皮屏障, 增强紧密连接蛋白的表达, 并通过NF-κB途径抑制促炎因子的过表达
    雷公藤[40] BacteroidesLachnospiraceae 结肠病理炎症减轻, IL-6、IL-17和TNF-α↓ 可能与通过改善肠道菌群结构, 恢复细菌多样性, 来调节肠道菌群有关
    人参皂苷Rg1[41] Lachnospiraceae↑, Staphylococcus、BacteroideRuminococcaceae_UCG_014↓ 结肠病理炎症改善, IL-4、IL-10↑, IL-6、IL-33、TNF-α、Rock1、RhoA和Nogo-B蛋白↓ 调节炎性细胞因子表达; 抑制巨噬细胞活化; 调节M1/M2巨噬细胞极化平衡并改善肠道菌群; 抑制结肠炎小Nogo-B/RhoA信号通路激活等
    淫羊藿苷[42] Helicobacteraceae、BacteroidesTricibacter↓, Lachnospiraceae、AkkermansiaLactobacillus 结肠病理结构改善, 结肠长度延长, IL-6、TNF-α↓, 抑制NF-κB通路 通过调节p-p65/p65表达, 提高肠道菌群丰度和组成, 抑制组织损伤和炎症反应
    黄芪素[43] Ruminiclostridium_9, Oscillibacter, Butyricicoccus, Ruminiclostridium, Ruminococcaceae_NK4A214_group, and Ruminococcaceae_UCG-009↑ ZO-1和Occludin↑, TNF-α、IL-1β、IL-6↓, 抑制NF-κB通路 抑制促炎细胞因子和NF-κB信号通路的活化, 改善肠道屏障功能和代谢内毒素血症, 并部分逆转UC小鼠肠道微生物群的改变
    丹参酸A[44] AkkermansiaBacillusBlautiaLachnoclostridiumLactobacillus↑, BacteroidesRoseburiaRuminiclostridium 结肠病理炎症改善, ZO-1、TGF-β↑, IL-1β、IL-6、MCP-1↓ 对炎症介质的调节, 利于肠道菌群的稳定, 通过选择性地促进益生菌的生长
    雪积草苷[45] HelicobacterJeotgalicoccusStaphylococcus 结肠病理炎症改善, ZO-1、E-cadherin表达↑ 可能依赖于黏膜屏障和肠道微生物群稳态的恢复
    苦豆子总碱[46] Desulfovibrio、CorynebacteriumAdlercreutzia↑, MucispirillumButyricimonas IL-1β、TGF-β1、血清TBA、T-CHO↓,IL-10↑ 减轻结肠损伤, 调节肠道微生物群的平衡和胆汁酸代谢
    下载: 导出CSV

    表  3  中药活性成分调节肠道菌群治疗AIT

    Table  3.   Modulation of gut microbiota by active ingredients in Chinese medicine for AIT

    中药成分 菌群变化 相应的指标变化 作用机制
    芪箭消瘿方[52] Lactobacillus↑(中、低剂量)Prevotellaceae↓(中、高剂量) sIgA、ZO-1和Occludin↑ 可能与调节肠道菌群生物多样性及物种组成有关, 进而增加结肠紧密连接蛋白及sIgA表达
    软坚消瘿颗粒[53] Firmicutes、Clostridium、Clostridiales、Ruminococcaceae和Prevotella↓, Proteobacteria、Moraxoniaceae、Alphaproteobacteria、EscherichiaMyroides TGAb和TPoAb↓, TSH↑ 影响代谢产物和代谢通路, 调节肠道菌群有关
    白芍总苷[54] LactobacillusPrevotellaceaeRomboutsia 甲状腺病变程度减轻, TG-Ab、TPO-Ab和TNF-α↓, IL-10、sIgA、ZO-1和Occludin蛋白↑ 可能通过调节肠道菌群组成及多样性, 改善肠黏膜屏障损伤从而发挥治疗AIT的作用
    益气化痰活血方[55] Firmicutes和F/B↓, Bacteroidetes和Actinobacteria↑ 血清TG-Ab↓,减轻甲状腺淋巴细胞炎症浸润程度 可能与改变肠道菌群的结构及组成有关
    下载: 导出CSV
  • [1] HOOPER LV, MACPHERSON AJ. Immune adaptations that maintain homeostasis with the intestinal microbiota[J]. Nat Rev Immunol, 2010, 10(3): 159-169. doi: 10.1038/nri2710
    [2] ADAK A, KHAN MR. An insight into gut microbiota and its functionalities[J]. Cell Mol Life Sci, 2019, 76(3): 473-493. doi: 10.1007/s00018-018-2943-4
    [3] SÁNCHEZ-TAPIA M, TOVAR AR, TORRES N. Diet as regulator of gut microbiota and its role in health and disease[J]. Arch Med Res, 2019, 50(5): 259-268. doi: 10.1016/j.arcmed.2019.09.004
    [4] KAU AL, AHERN PP, GRIFFIN NW, et al. Human nutrition, the gut microbiome and the immune system[J]. Nature, 2011, 474(7351): 327-336. doi: 10.1038/nature10213
    [5] SHEN HK, ZHAO ZT, ZHAO ZJ, et al. Native and engineered probiotics: Promising agents against related systemic and intestinal diseases[J]. Int J Mol Sci, 2022, 23(2): 594. doi: 10.3390/ijms23020594
    [6] ZHANG X, CHEN BD, ZHAO LD, et al. The gut microbiota: Emerging evidence in autoimmune diseases[J]. Trends Mol Med, 2020, 26(9): 862-873. doi: 10.1016/j.molmed.2020.04.001
    [7] 方心宇, 冷瑞雪, 范引光, 等. 自身免疫性疾病流行病学研究进展[J]. 中华疾病控制杂志, 2021, 25(8): 869-873. doi: 10.16462/j.cnki.zhjbkz.2021.08.001

    FANG XY, LENG RX, FAN YG, et al. Research advances in the epidemiology of autoimmune diseases[J]. Chin J Dis Contr Prev, 2021, 25(8): 869-873. doi: 10.16462/j.cnki.zhjbkz.2021.08.001
    [8] DANIELI MG, ANTONELLI E, PIGA MA, et al. Alarmins in autoimmune diseases[J]. Autoimmun Rev, 2022, 21(9): 103142. doi: 10.1016/j.autrev.2022.103142
    [9] FUGGER L, JENSEN LT, ROSSJOHN J. Challenges, progress, and prospects of developing therapies to treat autoimmune diseases[J]. Cell, 2020, 181(1): 63-80. doi: 10.1016/j.cell.2020.03.007
    [10] SAURIN S, MEINECK M, ERKEL G, et al. Drug candidates for autoimmune diseases[J]. Pharmaceuticals, 2022, 15(5): 503. doi: 10.3390/ph15050503
    [11] 赵丽丹, 孟夏, 徐浩杰, 等. 肠道菌群在自身免疫性疾病治疗中的前景[J]. 协和医学杂志, 2022, 13(5): 740-746. https://www.cnki.com.cn/Article/CJFDTOTAL-XHYX202205005.htm

    ZHAO LD, MENG X, XU HJ, et al. Prospect of gut microbiota-based intervention in autoimmune disease control[J]. Med J Peking Union Med Coll Hosp, 2022, 13(5): 740-746. https://www.cnki.com.cn/Article/CJFDTOTAL-XHYX202205005.htm
    [12] LU C, XU K, GUO H. The relationship of PADI4_94 polymorphisms with the morbidity of rheumatoid arthritis in Caucasian and Asian populations: A meta-analysis and system review[J]. Clin Rheumatol, 2018, 37(2): 289-296. doi: 10.1007/s10067-017-3964-3
    [13] 中华医学会风湿病学分会. 2018中国类风湿关节炎诊疗指南[J]. 中华内科杂志, 2018, 57(4): 242-251. doi: 10.3760/cma.j.issn.0578-1426.2018.04.004

    Chinese Rheumatology Association. 2018 Chinese guideline for the diagnosis and treatment of rheumatoid arthritis[J]. Chin J Intern Med, 2018, 57(4): 242-251. doi: 10.3760/cma.j.issn.0578-1426.2018.04.004
    [14] NOACK M, MIOSSEC P. Th17 and regulatory T cell balance in autoimmune and inflammatory diseases[J]. Autoimmun Rev, 2014, 13(6): 668-677. doi: 10.1016/j.autrev.2013.12.004
    [15] VAGHEF-MEHRABANY E, ALIPOUR B, HOMAYOUNI-RAD A, et al. Probiotic supplementation improves inflammatory status in patients with rheumatoid arthritis[J]. Nutrition, 2014, 30(4): 430-435. doi: 10.1016/j.nut.2013.09.007
    [16] FAN ZX, ROSS RP, STANTON C, et al. Lactobacillus casei CCFM1074 alleviates collagen-induced arthritis in rats via balancing Treg/Th17 and modulating the metabolites and gut microbiota[J]. Front Immunol, 2021, 12: 680073. doi: 10.3389/fimmu.2021.680073
    [17] SUN HJ, GUO YK, WANG HD, et al. Gut commensal Parabacteroides distasonis alleviates inflammatory arthritis[J]. Gut, 2023, 2023: 327756.
    [18] ZHANG X, ZHANG DY, JIA HJ, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment[J]. Nat Med, 2015, 21(8): 895-905. doi: 10.1038/nm.3914
    [19] SCHER JU, SCZESNAK A, LONGMAN RS, et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis[J]. eLife, 2013, 2: e01202. doi: 10.7554/eLife.01202
    [20] HASAN H, ISMAIL H, EL-ORFALI Y, et al. Therapeutic benefits of Indole-3-Carbinol in adjuvant-induced arthritis and its protective effect against methotrexate induced-hepatic toxicity[J]. BMC Complement Altern Med, 2018, 18(1): 337. doi: 10.1186/s12906-018-2408-1
    [21] SHIRANI K, IRANSHAHI M, ASKARI VR, et al. Comparative evaluation of the protective effects of oral administration of auraptene and umbelliprenin against CFA-induced chronic inflammation with polyarthritis in rats[J]. Biomed Pharmacother, 2021, 139: 111635. doi: 10.1016/j.biopha.2021.111635
    [22] PANG J, MA SP, XU XY, et al. Effects of rhizome of Atractylodes koreana (Nakai) Kitam on intestinal flora and metabolites in rats with rheumatoid arthritis[J]. J Ethnopharmacol, 2021, 281: 114026. doi: 10.1016/j.jep.2021.114026
    [23] LI YZ, DAI MX, WANG LL, et al. Polysaccharides and glycosides from Aralia echinocaulis protect rats from arthritis by modulating the gut microbiota composition[J]. J Ethnopharmacol, 2021, 269: 113749. doi: 10.1016/j.jep.2020.113749
    [24] RUI Z, ZHANG L, LI XF, et al. Pterostilbene exert an anti-arthritic effect by attenuating inflammation, oxidative stress, and alteration of gut microbiota[J]. J Food Biochem, 2022, 46(5): e14011.
    [25] XIAO M, FU XP, NI YL, et al. Protective effects of Paederia scandens extract on rheumatoid arthritis mouse model by modulating gut microbiota[J]. J Ethnopharmacol, 2018, 226: 97-104. doi: 10.1016/j.jep.2018.08.012
    [26] GUO LX, WANG HY, LIU XD, et al. Saponins from Clematis mandshurica Rupr. regulates gut microbiota and its metabolites during alleviation of collagen-induced arthritis in rats[J]. Pharmacol Res, 2019, 149: 104459. doi: 10.1016/j.phrs.2019.104459
    [27] HE Y, CHENG B, GUO BJ, et al. Metabonomics and 16S rRNA gene sequencing to study the therapeutic mechanism of Danggui Sini Decoction on collagen-induced rheumatoid arthritis rats with Cold Bi syndrome[J]. J Pharm Biomed Anal, 2023, 222: 115109. doi: 10.1016/j.jpba.2022.115109
    [28] ALTOMARE A, PUTIGNANI L, DEL CHIERICO F, et al. Gut mucosal-associated microbiota better discloses inflammatory bowel disease differential patterns than faecal microbiota[J]. Dig Liver Dis, 2019, 51(5): 648-656. doi: 10.1016/j.dld.2018.11.021
    [29] BARYSHNIKOVA N, USPENSKIY Y, SUVOROVA M, et al. P690 Changes of intestinal microbiota in patients with inflammatory bowel diseases[J]. J Crohns Colitis, 2021, 15(Supplement_1): S607.
    [30] TAKAHASHI K, NISHIDA A, FUJIMOTO T, et al. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn ' s disease[J]. Digestion, 2016, 93(1): 59-65. doi: 10.1159/000441768
    [31] YAO Y, CAI XY, FEI WD, et al. The role of short-chain fatty acids in immunity, inflammation and metabolism[J]. Crit Rev Food Sci Nutr, 2022, 62(1): 1-12. doi: 10.1080/10408398.2020.1854675
    [32] ATARASHI K, TANOUE T, OSHIMA K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota[J]. Nature, 2013, 500(7461): 232-236. doi: 10.1038/nature12331
    [33] SINGH SB, COFFMAN CN, CARROLL-PORTILLO A, et al. Notch signaling pathway is activated by sulfate reducing bacteria[J]. Front Cell Infect Microbiol, 2021, 11: 695299. doi: 10.3389/fcimb.2021.695299
    [34] ROWAN F, DOCHERTY NG, MURPHY M, et al. Desulfovibrio bacterial species are increased in ulcerative colitis[J]. Dis Colon Rectum, 2010, 53(11): 1530-1536. doi: 10.1007/DCR.0b013e3181f1e620
    [35] INFLAMMATORY BOWEL DISEASE GROUP CSOG. Chinese consensus on diagnosis and treatment in inflammatory bowel disease (2018, Beijing)[J]. J Dig Dis, 2021, 22(6): 298-317. doi: 10.1111/1751-2980.12994
    [36] NAKASE H, UCHINO M, SHINZAKI S, et al. Evidence-based clinical practice guidelines for inflammatory bowel disease 2020[J]. J Gastroenterol, 2021, 56(6): 489-526. doi: 10.1007/s00535-021-01784-1
    [37] LIU YL, ZHOU MY, YANG M, et al. Pulsatilla chinensis saponins ameliorate inflammation and DSS-induced ulcerative colitis in rats by regulating the composition and diversity of intestinal flora[J]. Front Cell Infect Microbiol, 2021, 11: 728929. doi: 10.3389/fcimb.2021.728929
    [38] LI PZ, WU MN, XIONG WC, et al. Saikosaponin-d ameliorates dextran sulfate sodium-induced colitis by suppressing NF-κB activation and modulating the gut microbiota in mice[J]. Int Immunopharmacol, 2020, 81: 106288. doi: 10.1016/j.intimp.2020.106288
    [39] LV H, JIA HP, CAI WJ, et al. Rehmannia glutinosa polysaccharides attenuates colitis via reshaping gut microbiota and short-chain fatty acid production[J]. J Sci Food Agric, 2023, 103(8): 3926-3938. doi: 10.1002/jsfa.12326
    [40] WU H, RAO Q, MA GC, et al. Effect of triptolide on dextran sodium sulfate-induced ulcerative colitis and gut microbiota in mice[J]. Front Pharmacol, 2020, 10: 1652. doi: 10.3389/fphar.2019.01652
    [41] LONG J, LIU XK, KANG ZP, et al. Ginsenoside Rg1 ameliorated experimental colitis by regulating the balance of M1/M2 macrophage polarization and the homeostasis of intestinal flora[J]. Eur J Pharmacol, 2022, 917: 174742. doi: 10.1016/j.ejphar.2022.174742
    [42] ZHANG HR, ZHUO SX, SONG DN, et al. Icariin inhibits intestinal inflammation of DSS-induced colitis mice through modulating intestinal flora abundance and modulating p-p65/p65 molecule[J]. Turk J Gastroenterol, 2021, 32(4): 382-392. doi: 10.5152/tjg.2021.20282
    [43] PENG L, GAO XY, NIE L, et al. Astragalin attenuates dextran sulfate sodium (DSS)-induced acute experimental colitis by alleviating gut microbiota dysbiosis and inhibiting NF-κB activation in mice[J]. Front Immunol, 2020, 11: 2058. doi: 10.3389/fimmu.2020.02058
    [44] WANG K, YANG QQ, MA QX, et al. Protective effects of salvianolic acid A against dextran sodium sulfate-induced acute colitis in rats[J]. Nutrients, 2018, 10(6): 791. doi: 10.3390/nu10060791
    [45] LI HB, CHEN XH, LIU JY, et al. Ethanol extract of Centella asiatica alleviated dextran sulfate sodium-induced colitis: Restoration on mucosa barrier and gut microbiota homeostasis[J]. J Ethnopharmacol, 2021, 267: 113445. doi: 10.1016/j.jep.2020.113445
    [46] JIA YQ, YUAN ZW, ZHANG XS, et al. Total alkaloids of Sophora alopecuroides L. ameliorated murine colitis by regulating bile acid metabolism and gut microbiota[J]. J Ethnopharmacol, 2020, 255: 112775. doi: 10.1016/j.jep.2020.112775
    [47] LEE DSW, ROJAS OL, GOMMERMAN JL. B cell depletion therapies in autoimmune disease: Advances and mechanistic insights[J]. Nat Rev Drug Discov, 2021, 20(3): 179-199. doi: 10.1038/s41573-020-00092-2
    [48] DWIVEDI SN, KALARIA T, BUCH H. Thyroid autoantibodies[J]. J Clin Pathol, 2023, 76(1): 19-28. doi: 10.1136/jcp-2022-208290
    [49] BRČIĆ L, BARIĆ AN, GRAČAN S, et al. Association of established thyroid peroxidase autoantibody (TPOAb) genetic variants with Hashimoto ' s thyroiditis[J]. Autoimmunity, 2016, 49(7): 480-485. doi: 10.1080/08916934.2016.1191475
    [50] GONG BS, WANG CY, MENG FR, et al. Association between gut microbiota and autoimmune thyroid disease: A systematic review and meta-analysis[J]. Front Endocrinol, 2021, 12: 774362. doi: 10.3389/fendo.2021.774362
    [51] KNEZEVIC J, STARCHL C, TMAVA BERISHA A, et al. Thyroid-gut-axis: How does the microbiota influence thyroid function?[J]. Nutrients, 2020, 12(6): 1769. doi: 10.3390/nu12061769
    [52] 牧亚峰, 左新河, 向楠, 等. 基于"肠道菌群-黏膜屏障"探讨芪箭消瘿方对自身免疫性甲状腺炎大鼠的作用机制研究[J]. 中国中医基础医学杂志, 2022, 28(3): 362-369. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYJC202203014.htm

    MU YF, ZUO XH, XIANG N, et al. Study on mechanism of Qijian Xiaoying recipe on autoimmune thyroiditis rats based on intestinal flora mucosal barrier[J]. J Basic Chin Med, 2022, 28(3): 362-369. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYJC202203014.htm
    [53] 董天娇. 基于代谢组学及肠道菌群探讨软坚消瘿颗粒对EAT大鼠的作用机制[D]. 沈阳: 辽宁中医药大学, 2022.

    DONG TJ. Based on metabonomics and intestinal flora, the mechanism of Ruanjian Xiaoying Granule on EAT rats was discussed[D]. Shenyang: Liaoning University of Traditional Chinese Medicine, 2022.
    [54] 牧亚峰, 向楠, 左新河, 等. 白芍总苷对自身免疫性甲状腺炎大鼠肠黏膜屏障及肠道菌群的影响[J]. 中草药, 2021, 52(11): 3269-3277. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202111014.htm

    MU YF, XIANG N, ZUO XH, et al. Effects of total glucosides of Paeonia lactiflora on intestinal mucosal barrier and intestinal flora in rats with autoimmune thyroiditis[J]. Chin Tradit Herb Drugs, 2021, 52(11): 3269-3277. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202111014.htm
    [55] 郭风宜, 刘子玉, 王智民, 等. 益气化痰活血方对自身免疫性甲状腺炎小鼠肠道菌群的影响[J]. 时珍国医国药, 2023, 34(2): 292-295. https://www.cnki.com.cn/Article/CJFDTOTAL-SZGY202302010.htm

    GUO FY, LIU ZY, WANG ZM, et al. Effect of Yiqi Huatan Huoxue recipe on intestinal flora in mice with autoimmune thyroiditis[J]. Lishizhen Med Mater Med Res, 2023, 34(2): 292-295. https://www.cnki.com.cn/Article/CJFDTOTAL-SZGY202302010.htm
    [56] ZHANG SW, GANG XK, YANG S, et al. The alterations in and the role of the Th17/treg balance in metabolic diseases[J]. Front Immunol, 2021, 12: 678355. doi: 10.3389/fimmu.2021.678355
    [57] LI D, GUO B, WU HJ, et al. Interleukin-17 in systemic lupus erythematosus: A comprehensive review[J]. Autoimmunity, 2015, 48(6): 353-361. doi: 10.3109/08916934.2015.1037441
    [58] ZHANG MX, YIN XF. AB0137 diversity analysis of intestinal flora in patients with systemic lupus erythematosus[J]. Ann Rheum Dis, 2020, 79: 1369.
    [59] ZHANG LL, WEI W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony[J]. Pharmacol Ther, 2020, 207: 107452. doi: 10.1016/j.pharmthera.2019.107452
    [60] ZHAO X, TANG XJ, YAN Q, et al. Triptolide ameliorates lupus via the induction of miR-125a-5p mediating Treg upregulation[J]. Int Immunopharmacol, 2019, 71: 14-21. doi: 10.1016/j.intimp.2019.02.047
    [61] MOMTAZI-BOROJENI AA, HAFTCHESHMEH SM, ESMAEILI SA, et al. Curcumin: A natural modulator of immune cells in systemic lupus erythematosus[J]. Autoimmun Rev, 2018, 17(2): 125-135. doi: 10.1016/j.autrev.2017.11.016
    [62] LIAO JY, LIU Y, WU HJ, et al. The role of icaritin in regulating Foxp3/IL17a balance in systemic lupus erythematosus and its effects on the treatment of MRL/lpr mice[J]. Clin Immunol, 2016, 162: 74-83. doi: 10.1016/j.clim.2015.11.006
    [63] 王维钊, 向晓星. Treg/Th17、Th1/Th2平衡在自身免疫性肝炎中的免疫学机制及诊疗新靶点[J]. 临床肝胆病杂志, 2019, 35(8): 1874-1877. doi: 10.3969/j.issn.1001-5256.2019.08.051

    WANG WZ, XIANG XX. Immunological mechanism of Treg/Th17 and Th1/Th2 balance in autoimmune hepatitis and new targets for diagnosis and treatment[J]. J Clin Hepatol, 2019, 35(8): 1874-1877. doi: 10.3969/j.issn.1001-5256.2019.08.051
    [64] LIU YL, YAN WM, YUAN W, et al. Treg/Th17 imbalance is associated with poor autoimmune hepatitis prognosis[J]. Clin Immunol, 2019, 198: 79-88. doi: 10.1016/j.clim.2018.11.003
    [65] MANFREDO VIEIRA S, HILTENSPERGER M, KUMAR V, et al. Translocation of a gut pathobiont drives autoimmunity in mice and humans[J]. Science, 2018, 359(6380): 1156-1161. doi: 10.1126/science.aar7201
    [66] LIU QY, HE W, TANG RQ, et al. Intestinal homeostasis in autoimmune liver diseases[J]. Chin Med J, 2022, 135(14): 1642-1652. doi: 10.1097/CM9.0000000000002291
    [67] ZHU LR, LI SS, ZHENG WQ, et al. Targeted modulation of gut microbiota by traditional Chinese medicine and natural products for liver disease therapy[J]. Front Immunol, 2023, 14: 1086078. doi: 10.3389/fimmu.2023.1086078
  • 加载中
图(1) / 表(3)
计量
  • 文章访问数:  851
  • HTML全文浏览量:  127
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-11
  • 网络出版日期:  2023-07-15
  • 发布日期:  2023-07-10

目录

    /

    返回文章
    返回