留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于网络药理学结合LC-MS与分子对接探讨黄芪-莪术药对治疗卵巢癌的有效成分及作用机制

祖玥 梁研 孙若岚 赵凡 卞勇 唐德才 尹刚

祖玥, 梁研, 孙若岚, 赵凡, 卞勇, 唐德才, 尹刚. 基于网络药理学结合LC-MS与分子对接探讨黄芪-莪术药对治疗卵巢癌的有效成分及作用机制[J]. 南京中医药大学学报, 2023, 39(7): 645-656. doi: 10.14148/j.issn.1672-0482.2023.0645
引用本文: 祖玥, 梁研, 孙若岚, 赵凡, 卞勇, 唐德才, 尹刚. 基于网络药理学结合LC-MS与分子对接探讨黄芪-莪术药对治疗卵巢癌的有效成分及作用机制[J]. 南京中医药大学学报, 2023, 39(7): 645-656. doi: 10.14148/j.issn.1672-0482.2023.0645
ZU Yue, LIANG Yan, SUN Ruo-lan, ZHAO Fan, BIAN Yong, TANG De-cai, Yin Gang. Study on Effective Components and Mechanism of Astragalus-Zedoary against Ovarian Cancer Based on Network Pharmacology and Molecular Docking[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(7): 645-656. doi: 10.14148/j.issn.1672-0482.2023.0645
Citation: ZU Yue, LIANG Yan, SUN Ruo-lan, ZHAO Fan, BIAN Yong, TANG De-cai, Yin Gang. Study on Effective Components and Mechanism of Astragalus-Zedoary against Ovarian Cancer Based on Network Pharmacology and Molecular Docking[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(7): 645-656. doi: 10.14148/j.issn.1672-0482.2023.0645

基于网络药理学结合LC-MS与分子对接探讨黄芪-莪术药对治疗卵巢癌的有效成分及作用机制

doi: 10.14148/j.issn.1672-0482.2023.0645
基金项目: 

国家自然科学基金面上项目 82074035

国家自然科学基金面上项目 81873021

国家自然科学基金面上项目 82274116

国家自然科学基金青年科学基金项目 82003961

国家自然科学基金青年科学基金项目 82204641

江苏省中医药科技发展专项 2020ZX01

国家级大学生创新创业训练计划项目 202110315022

详细信息
    作者简介:

    祖玥, 女, E-mail: 3172148734@qq.com

    通讯作者:

    唐德才, 男, 教授, 主要从事中药药性、配伍机制及临床应用方面的研究,E-mail: talknow@163.com

    尹刚, 男, 副研究员, 主要从事中药配伍抗肿瘤的机制研究,E-mail: yingang@njucm.edu.cn

  • 中图分类号: R285.5

Study on Effective Components and Mechanism of Astragalus-Zedoary against Ovarian Cancer Based on Network Pharmacology and Molecular Docking

  • 摘要:   目的  采用网络药理学方法、液质联用(LC-MS)及分子对接技术分析黄芪-莪术药对治疗卵巢癌(Ovarian cancer, OC)的有效成分、关键靶点及作用机制。  方法  通过TCMSP、SWISS、Drugbank、DisGeNET和GeneCards等数据库及文献研究, 合并LC-MS定量分析的黄芪-莪术药对代表性成分信息, 获得药对潜在活性成分并筛选其抗OC的主要作用靶点, 并借助Metascape数据库对其进行GO功能富集和KEGG通路分析; 运用AutoDock Vina对黄芪-莪术核心活性成分与关键作用靶点进行分子对接验证其结合活性。  结果  整合网络药理学及LC-MS技术筛选得到黄芪-莪术药对治疗OC核心活性成分主要为黄芪中黄酮类化合物及莪术中姜黄素类化合物; PPI分析发现其潜在关键靶点为TP53、AKT1、VEGFA、MYC、EGFR等; GO、KEGG富集分析结果涉及调节信号通路的蛋白激酶, 并与MAPK、HIF-1等信号通路密切相关; 分子对接结果显示, 黄芪-莪术药对治疗OC的核心成分与关键靶点具有较强的结合活性。  结论  采用网络药理学方法联合LC-MS及分子对接技术, 可快速分析黄芪-莪术药对潜在活性成分, 并初步揭示了成分-靶点-通路之间的关系。

     

  • 图  1  黄芪-莪术药对混合标准品及水煎液总离子流图

    注:A.混合标准品; B.黄芪-莪术水煎液; C.定量的11种成分

    Figure  1.  Total ion flow diagram of astragalus-zedoary mixture standard and water decoction

    图  2  黄芪-莪术药对抗OC潜在活性成分与作用靶点网络

    注:A.交集靶点韦恩图; B.黄芪-莪术药对“药材-成分-靶点”网络图;黄色菱形为药物成分;红色圆形为蛋白靶点;节点大小与Degree值成正比

    Figure  2.  Potential active components and target network of astragalus-zedoary against OC

    图  3  黄芪-莪术药对抗OC相关靶点的PPI网络

    Figure  3.  PPI network of related targets of astragalus-zedoary against OC

    图  4  黄芪-莪术药对抗OC的GO和KEGG富集分析

    注:A~C.GO富集结果; D~E.KEGG富集结果

    Figure  4.  GO and KEGG enrichment analysis of astragalus-zedoary against OC

    图  5  黄芪-莪术药对“药材-成分-靶点-通路-疾病”网络

    注:黄色菱形为药物成分; 红色圆形为蛋白靶点; 绿色菱形为信号通路; 节点大小与Degree值成正比

    Figure  5.  Medicine-component-target-pathway-disease network of astragalus-zedoary

    图  6  黄芪-莪术药对抗OC的活性成分与关键靶点分子对接模式图

    Figure  6.  Model diagram of molecular docking between active components and key targets of astragalus-zedoary against OC

    表  1  正负离子模式下, 黄芪-莪术水煎液中成分特征信息及含量

    Table  1.   Characteristic information and content of components in astragalus-zedoary decoction under positive and negative ion mode

    化合物 电喷雾离子源模式 母离子m/z 子离子m/z 保留时间/min 含量/(μg·g-1)
    Calycosin-7-glucoside + 447.1 270.0 4.29 1 106.741 0
    Ononin + 453.1 290.9 5.69 9.378 9
    Calycosin - 283.05 268.0 6.14 336.948 5
    Astragaloside Ⅳ + 808.4 628.3 7.17 15.691 9
    Formononetin + 267.038 252.0 7.37 3.594 7
    Astragaloside Ⅱ + 850.35 670.3 7.60 18.567 7
    Soyasaponin Ⅰ - 941.4 615.3 7.88 2.752 4
    Bisdemethoxycurcumin - 307.05 186.9 8.26 0.105 0
    Demethoxycurcumin - 337.05 217.0 8.39 0.071 3
    Curcumin - 367.1 217.02 8.5 0.000 2
    Germacron + 219.088 201.00 10.6 0.007 4
    下载: 导出CSV

    表  2  黄芪-莪术药对活性成分信息

    Table  2.   Information on active components of astragalus-zedoary

    药材 编号 化学成分 OB/% DL PubChem CID 备注
    黄芪Astragali Radix AR1 (3S, 8S, 9S, 10R, 13R, 14S, 17R)-10, 13-dimethyl-17-[(2R, 5S)-5-propan-2-yloctan-2-yl]-2, 3, 4, 7, 8, 9, 11, 12, 14, 15, 16, 17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol 36.23 0.78 15976101
    AR2 Quercetin 46.43 0.28 5280343
    AR3 Mairin 55.38 0.78 64971
    AR4 Jaranol 50.83 0.30 5318869
    AR5/CR5 Hederagenin 36.91 0.76 73299
    AR6 Isorhamnetin 49.60 0.31 5281654
    AR7 3, 9-di-O-methylnissolin 53.74 0.48 15689655
    AR8 7-O-Methylisomucronulatol 74.69 0.30 15689652
    AR9 Methylnissolin 64.26 0.42 14077830
    AR10 Bifendate 31.10 0.67 108213
    AR11 Ononin 11.52 0.78 442813 -
    AR12 Formononetin 69.68 0.21 5280378
    AR13 Soyasaponin I 2.06 0.05 122097
    AR14 Calycosin 47.76 0.24 5280448
    AR15 Kaempferol 41.89 0.24 5280863
    AR16 FA 68.96 0.71 241106144
    AR17 Acetylastragaloside Ⅰ 43.54 0.10 101665834
    AR18 (3R)-3-(2-hydroxy-3, 4-dimethoxyphenyl)chroman-7-ol 67.67 0.26 10380176
    AR19 Isomucronulatol-7, 2'-di-O-glucosiole 49.28 0.62 125142
    AR20 1, 7-Dihydroxy-3, 9-dimethoxy pterocarpene 39.04 0.48 5316760
    AR21 Astragaloside Ⅰ 46.79 0.11 13996685
    AR22 Neoastragaloside Ⅰ - - 131637750 文献补充[12]
    AR23 Astragaloside Ⅱ 46.06 0.13 13996693 -
    AR24 Astragaloside Ⅲ 31.83 0.10 441905
    AR25 Astragaloside Ⅳ 22.50 0.15 13943297
    AR26 Calycosin-7-glucoside 41.60 0.18 5318267
    AR27 Isoastragaloside Ⅰ - - 60148697 文献补充[9-13]
    AR28 Isoastragaloside Ⅱ - - 60148655
    AR29 Isoastragaloside Ⅳ - - 102393334
    AR30 5-Methyl-7-methoxyisoflavone - - 2734290
    AR31 Astragalus polysaccharide - - 2782115
    AR32 Isorhamnetin 3-Gentiobioside - - 5488387
    AR33 Astraisoflavan-7-O-β-D-glucoside - - 15689656
    莪术Curcumae Rhizoma CR1 (+/-)-Isoborneol 86.98 0.05 6321405
    CR2 D-Camphene 34.98 0.04 92221
    CR3 γ-elemene 23.79 0.06 535260
    CR4 (+/-)-Borneol 81.80 0.05 319105502
    AR5/CR5 Hederagenin 36.91 0.75 73299
    CR6 (-)-Epoxycaryophyllene 35.94 0.13 1742210
    CR7 (-)-Camphor 21.68 0.05 444294
    CR8 Demethoxycurcumin 4.89 0.33 5469424
    CR9 Isocurcumenol 97.67 0.13 10399139
    CR10 Difurocumenone 8.86 0.61 -
    CR11 Aerugidiol 38.70 0.12 11776892
    CR12 Furanodiene 45.11 0.09 636458 -
    CR13 Curcumenol 87.82 0.13 167812
    CR14 Curcumol 103.55 0.13 14240392
    CR15 Gweicurculactone 42.92 0.14 130117
    CR16 Cineole 59.96 0.05 2758
    CR17 (-)-β-Pinene 44.77 0.05 440967
    CR18 Wenjine 47.93 0.27 101603568
    CR19 (-)-β-elemene 25.63 0.06 312242582
    CR20 Germacrone 32.5 0.07 6436348
    CR21 Calarene 51.55 0.11 28481
    CR22 Humulene Epoxide Ⅱ 34.37 0.10 10704181
    CR23 Bisdemethoxycurcumin 77.38 0.26 5315472
    CR24 Curzerene - - 572766
    CR25 Dehydrocurdione - - 6442617
    CR26 Zedoarondiol - - 14632998
    CR27 Isozedoarondiol - - 14632999
    CR28 Curzerenone - - 3081930
    CR29 α-Pinene - - 258567152
    CR30 Furanodienone - - 6506548 文献补充[9-10, 14-17]
    CR31 Curcumin - - 969516
    CR32 Aerugidiol - - 11776892
    CR33 Epicurzerenone - - 5317062
    CR34 Curdione - - 6441391
    CR35 Neocurdione - - 24836956
    下载: 导出CSV

    表  3  黄芪-莪术药对核心活性成分与关键靶点分子对接结果(kcal·mol-1)

    Table  3.   Molecular docking results of core active components and key targets of astragalus-zedoary against OC (kcal·mol-1)

    靶点 PDB ID Legand ID 成分
    AR2 AR15 AR6 AR9 AR7 AR4 AR18 AR8 CR8 CR23
    HSP90AA1 4BQG 50Q -9.0 -9.0 -9.2 -7.8 -7.9 -8.8 -8.0 -8.1 -8.9 -8.8
    EGFR 5FEQ 5XH -8.6 -8.3 -8.5 -6.8 -6.8 -7.9 -7.4 -7.5 -8.0 -8.0
    ESR1 1R5K GW5 -8.2 -8.3 -8.2 -8.2 -8.5 -8.7 -7.7 -7.9 -9.6 -9.6
    AKT1 6HHF G4K -8.8 -8.7 -8.6 -8.7 -8.0 -8.7 -8.7 -8.4 -8.8 -9.1
    SRC 2BDF 24A -8.1 -7.7 -8.0 -6.5 -6.1 -7.3 -7.7 -7.9 -7.9 -7.5
    VEGFA 6BFT CSO -6.3 -5.9 -5.9 -5.6 -5.4 -5.7 -5.4 -5.3 -5.2 -5.0
    STAT3 6NUQ KQV -5.5 -5.5 -5.4 -5.0 -5.0 -5.3 -4.8 -4.9 -4.9 -5.1
    MAPK3 4QTB 38Z -9.2 -9.1 -9.2 -8.0 -7.9 -9.3 -8.7 -8.3 -10.0 -10.0
    MTOR 4JSV ADP -7.5 -7.5 -7.6 -7.1 -6.5 -7.0 -7.4 -7.1 -7.3 -7.3
    TNF 1NCF - -7.4 -7.4 -7.6 -7.7 -7.9 -6.9 -7.3 -7.2 -6.6 -6.5
    JUN 2P33 J07 -8.2 -8.2 -8.1 -8.2 -7.3 -7.9 -7.6 -7.7 -8.4 -8.5
    IL6 4CNI TAM -6.4 -6.2 -6.4 -6.2 -6.0 -6.1 -6.4 -6.3 -7.2 -7.2
    MMP9 4H1Q OXX -7.0 -7.5 -6.9 -6.5 -6.6 -6.7 -6.5 -6.6 -7.2 -6.8
    CASP3 1RE1 NA3 -6.9 -6.4 -6.7 -6.3 -6.4 -6.5 -5.9 -5.8 -6.6 -6.2
    CCND1 2W96 GOL -7.4 -7.1 -7.3 -6.7 -7.0 -6.5 -6.7 -5.9 -6.8 -6.7
    ERBB2 3PP0 03Q -9.4 -8.8 -8.9 -6.7 -5.3 -8.0 -9.0 -9.2 -9.7 -9.8
    PTEN 1D5R TLA -6.4 -6.5 -6.4 -5.8 -5.6 -5.9 -5.6 -5.0 -6.6 -6.4
    HIF1A 2ILM AKG -7.3 -7.4 -7.1 -8.0 -7.9 -7.1 -7.2 -7.2 -7.6 -7.3
    TP53 4AGL P84 -6.5 -6.3 -6.3 -6.5 -6.5 -6.3 -6.3 -6.4 -6.2 -6.1
    MYC 5I4Z GOL -5.8 -5.7 -5.4 -6.3 -5.8 -5.7 -5.3 -5.4 -6.1 -5.8
    IL1B 6Y8M SX2 -5.2 -5.1 -5.2 -5.2 -5.4 -4.9 -5.1 -5.0 -5.3 -5.0
    下载: 导出CSV
  • [1] KUROKI L, GUNTUPALLI SR. Treatment of epithelial ovarian cancer[J]. BMJ, 2020, 371: m3773.
    [2] WANG XZ, SU PW, HAO Q, et al. A Chinese classical prescription Guizhi-Fuling Wan in treatment of ovarian cancer: An overview[J]. Biomed Pharmacother, 2022, 153: 113401. doi: 10.1016/j.biopha.2022.113401
    [3] 于洋, 李佳, 韩凤娟. 卵巢癌中西医治疗的研究进展[J]. 医学综述, 2021, 27(20): 4092-4096. https://www.cnki.com.cn/Article/CJFDTOTAL-YXZS202120023.htm

    YU Y, LI J, HAN FJ. Research progress of integrated traditional Chinese medicine and western medicine for ovarian cancer[J]. Med Recapitul, 2021, 27(20): 4092-4096. https://www.cnki.com.cn/Article/CJFDTOTAL-YXZS202120023.htm
    [4] 唐德才. 活血化瘀药在抗肿瘤及转移中的运用思考[J]. 南京中医药大学学报, 2019, 35(1): 1-4. doi: 10.14148/j.issn.1672-0482.2019.0001

    TANG DC. Thinking on the application of blood-activating and stasis-resolving medicine in anti-tumor and metastasis[J]. J Nanjing Univ Tradit Chin Med, 2019, 35(1): 1-4. doi: 10.14148/j.issn.1672-0482.2019.0001
    [5] 余倩慧, 刘夫艳, 尹刚, 等. 从动静辩证关系探讨补气活血药抗肿瘤转移的内涵[J]. 南京中医药大学学报, 2022, 38(9): 765-769. doi: 10.14148/j.issn.1672-0482.2022.0765

    YU QH, LIU FY, YIN G, et al. Exploring the connotation of anti-tumor metastasis by supplementing Qi, invigorating blood from the syndrome differentiation between the static and dynamic process[J]. J Nanjing Univ Tradit Chin Med, 2022, 38(9): 765-769. doi: 10.14148/j.issn.1672-0482.2022.0765
    [6] 齐卓操, 尹刚. 唐德才教授"补气活血法"辨治胃肠癌病经验[J]. 中医研究, 2021, 34(9): 71-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYJ202109022.htm

    QI ZC, YIN G. Professor Tang decai's experience in treating gastrointestinal cancer by "invigorating qi and activating blood"[J]. Tradit Chin Med Res, 2021, 34(9): 71-73. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYJ202109022.htm
    [7] YIN G, TANG DC, DAI JG, et al. Combination efficacy of Astragalus membranaceus and Curcuma wenyujin at different stages of tumor progression in an imageable orthotopic nude mouse model of metastatic human ovarian cancer expressing red fluorescent protein[J]. Anticancer Res, 2015, 35(6): 3193-3207.
    [8] 时晓霞, 唐德才, 尹刚, 等. 黄芪、莪术配伍对人卵巢癌HO-8910原位移植瘤组织中MMP-2、FGF-2、BCL-2表达的影响[J]. 中华中医药学刊, 2018, 36(6): 1312-1315. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYHS201806008.htm

    SHI XX, TANG DC, YIN G, et al. Effect of compatibility of Astragalus and zedoary on expressions of MMP-2, FGF-2 and BCL-2 in orthotopic transplantation tumor tissue of HO-8910 ovarian carcinoma in situ[J]. Chin Arch Tradit Chin Med, 2018, 36(6): 1312-1315. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYHS201806008.htm
    [9] YIN G, CHENG XL, TAO WW, et al. Comparative analysis of multiple representative components in the herb pair Astragali Radix-Curcumae Rhizoma and its single herbs by UPLC-QQQ-MS[J]. J Pharm Biomed Anal, 2018, 148: 224-229. doi: 10.1016/j.jpba.2017.09.015
    [10] 杨苏钰, 唐德才, 曹子丰, 等. 黄芪甲苷配伍姜黄素对人卵巢癌HO-8910原位移植瘤转移的抑瘤作用[J]. 中国实验方剂学杂志, 2017, 23(6): 155-160. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201706028.htm

    YANG SY, TANG DC, CAO ZF, et al. Anti-tumor effect of astragaloside combined with curcumin on orthotopic transplantation tumor tissue of HO-8910 ovarian carcinoma metastasis[J]. Chin J Exp Tradit Med Formulae, 2017, 23(6): 155-160. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201706028.htm
    [11] 翟秋丽. 黄芪多糖对SKOV3细胞化疗增敏作用的自噬调控机制研究[D]. 广州: 广州中医药大学, 2018.

    ZHAI QL. Autophagy regulation of Astragalus polysaccharides on chemosensitivity of human ovarian cancer SKOV3 cells[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2018.
    [12] 赵灵改, 吕学泽, 刘毅, 等. 黄芪中皂苷类成分的研究进展[J]. 食品安全质量检测学报, 2021, 12(12): 4937-4946. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ202112034.htm

    ZHAO LG, LYU XZ, LIU Y, et al. Research progress of saponins in Astragalus membranaceus[J]. J Food Saf Qual, 2021, 12(12): 4937-4946. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ202112034.htm
    [13] 苏优拉, 陈贵林. 黄芪中黄酮类成分的研究进展[J]. 食品安全质量检测学报, 2021, 12(3): 849-857. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ202103001.htm

    SU YL, CHEN GL. Research progress of flavonoids in Astragalus membranaceus(fisch. ) bge[J]. J Food Saf Qual, 2021, 12(3): 849-857. https://www.cnki.com.cn/Article/CJFDTOTAL-SPAJ202103001.htm
    [14] 曹知勇, 陈静芹, 吕挺, 等. 莪术油对卵巢癌VEGFA, STAT3, mTOR的调控机制[J]. 中国实验方剂学杂志, 2021, 27(14): 70-80. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202114011.htm

    CAO ZY, CHEN JQ, LYU T, et al. Regulatory mechanism of zedoary turmeric oil on VEGFA, STAT3 and mTOR in ovarian cancer[J]. Chin J Exp Tradit Med Formulae, 2021, 27(14): 70-80. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202114011.htm
    [15] 徐佳越, 郭滢, 杨爽, 等. 中药单体调控PI3K/Akt信号通路干预卵巢癌的研究进展[J]. 中国实验方剂学杂志, 2021, 27(8): 218-227. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202108030.htm

    XU JY, GUO Y, YANG S, et al. Study progress of effect of traditional Chinese medicine monomer in intervening ovarian cancer by regulating PI3K/akt signaling pathway[J]. Chin J Exp Tradit Med Formulae, 2021, 27(8): 218-227. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202108030.htm
    [16] 陈仲波, 邢洁, 朱笕青, 等. 莪术油对卵巢癌裸鼠移植瘤的抑制作用及其联合顺铂的协同作用研究[J]. 中国现代应用药学, 2019, 36(12): 1462-1467. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYD201912003.htm

    CHEN ZB, XING J, ZHU JQ, et al. Antitumor effect and synergistic effect with cisplatin of zedoray turmeric oil on nude mice bearing ovarian cancer[J]. Chin J Mod Appl Pharm, 2019, 36(12): 1462-1467. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYD201912003.htm
    [17] 刘玉婉, 傅云峰, 吕卫国. 姜黄素在卵巢癌防治中的相关研究进展[J]. 中国中西医结合杂志, 2021, 41(2): 252-256. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZXJ202102030.htm

    LIU YW, FU YF, LYU WG. Research progress of curcumin in prevention and treatment of ovarian cancer[J]. Chin J Integr Tradit West Med, 2021, 41(2): 252-256. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZXJ202102030.htm
    [18] TROTT O, OLSON AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading[J]. J Comput Chem, 2010, 31(2): 455-461.
    [19] HSIN KY, GHOSH S, KITANO H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology[J]. PLoS One, 2013, 8(12): e83922.
    [20] TANG SM, DENG XT, ZHOU J, et al. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects[J]. Biomed Pharmacother, 2020, 121: 109604.
    [21] SHAFABAKHSH R, ASEMI Z. Quercetin: A natural compound for ovarian cancer treatment[J]. J Ovarian Res, 2019, 12(1): 55.
    [22] ZENG J, XU H, FAN PZ, et al. Kaempferol blocks neutrophil extracellular traps formation and reduces tumour metastasis by inhibiting ROS-PAD4 pathway[J]. J Cell Mol Med, 2020, 24(13): 7590-7599.
    [23] LI CH, LI JW, LI Y, et al. Isorhamnetin promotes MKN-45 gastric cancer cell apoptosis by inhibiting PI3K-mediated adaptive autophagy in a hypoxic environment[J]. J Agric Food Chem, 2021, 69(29): 8130-8143.
    [24] HUANG YP, MA YS, KUO CL, et al. Demethoxycurcumin suppresses human brain glioblastoma multiforme GBM 8401 cell xenograft tumor in nude mice in vivo[J]. Int J Mol Sci, 2021, 22(11): 5503.
    [25] KAO CC, CHENG YC, YANG MH, et al. Demethoxycurcumin induces apoptosis in HER2 overexpressing bladder cancer cells through degradation of HER2 and inhibiting the PI3K/Akt pathway[J]. Environ Toxicol, 2021, 36(11): 2186-2195.
    [26] HATAMIPOUR M, RAMEZANI M, TABASSI SAS, et al. Demethoxycurcumin: A naturally occurring curcumin analogue with antitumor properties[J]. J Cell Physiol, 2018, 233(12): 9247-9260.
    [27] ZHANG S, TANG DC, ZANG WH, et al. Synergistic inhibitory effect of traditional Chinese medicine astragaloside Ⅳ and curcumin on tumor growth and angiogenesis in an orthotopic nude-mouse model of human hepatocellular carcinoma[J]. Anticancer Res, 2017, 37(2): 465-473.
    [28] 邓樱, 唐润伟, 卫菊, 等. "黄芪-莪术"药对通过PTEN与p-AKT对人乳腺癌细胞增殖的影响[J]. 世界中医药, 2021, 16(11): 1712-1716. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZA202111013.htm

    DENG Y, TANG RW, WEI J, et al. Effects of "Radix astragali seu hedysari-rhizoma curcumae" on proliferation of MDA-MB-231 cells through PTEN and p-AKT[J]. World Chin Med, 2021, 16(11): 1712-1716. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZA202111013.htm
    [29] 孙若岚, 唐德才, 顾俊菲. 黄芪-莪术配伍对结肠癌原位移植瘤小鼠模型抗结肠癌生长转移的干预效应研究[J]. 中国中药杂志, 2021, 46(9): 2267-2275. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202109019.htm

    SUN RL, TANG DC, GU JF. Study on intervention effect of Astragali Radix-Curcumae Rhizoma on growth and metastasis of colon cancer in orthotopic transplantation mice model of colon cancer[J]. China J Chin Mater Med, 2021, 46(9): 2267-2275. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202109019.htm
    [30] BIAN Y, WANG G, ZHOU J, et al. Astragalus membranaceus (Huangqi) and Rhizoma curcumae (Ezhu) decoction suppresses colorectal cancer via downregulation of Wnt5/β-Catenin signal[J]. Chin Med, 2022, 17(1): 11.
    [31] GU JF, SUN RL, TANG DC, et al. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. suppresses growth and metastasis of colorectal cancer cells by inhibiting M2 macrophage polarization via a Sp1/ZFAS1/miR-153-3p/CCR5 regulatory axis[J]. Cell Biol Toxicol, 2022, 38(4): 679-697.
    [32] 许成勇, 徐冉, 王毓国, 等. 黄芪、莪术单药及配伍通过影响上皮间质转化抑制Lewis荷瘤小鼠肺转移的研究[J]. 北京中医药, 2019, 38(4): 336-339, 401. https://www.cnki.com.cn/Article/CJFDTOTAL-BJZO201904010.htm

    XU CY, XU R, WANG YG, et al. Inhibition of Astragalus membranaceus, Curcuma and its compatibility on lung metastases in Lewis tumor-bearing mice through influencing tumor epithelial-mesenchymal transition[J]. Beijing J Tradit Chin Med, 2019, 38(4): 336-339, 401. https://www.cnki.com.cn/Article/CJFDTOTAL-BJZO201904010.htm
    [33] GOODSELL DS, OLSON AJ. Automated docking of substrates to proteins by simulated annealing[J]. Proteins, 1990, 8(3): 195-202.
    [34] HUEY R, MORRIS GM, OLSON AJ, et al. A semiempirical free energy force field with charge-based desolvation[J]. J Comput Chem, 2007, 28(6): 1145-1152.
    [35] PAN XL, WANG H, ZHANG YQ, et al. AA-score: A new scoring function based on amino acid-specific interaction for molecular docking[J]. J Chem Inf Model, 2022, 62(10): 2499-2509.
  • 加载中
图(6) / 表(3)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  30
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-03
  • 网络出版日期:  2023-07-15
  • 发布日期:  2023-07-10

目录

    /

    返回文章
    返回