留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

虎杖调控脂质代谢治疗呼吸道合胞病毒感染肺纤维化小鼠模型的研究

陈佳斌 张梦瑶 王单 黄同杏 单进军 杨珺超 宋康 林丽丽

陈佳斌, 张梦瑶, 王单, 黄同杏, 单进军, 杨珺超, 宋康, 林丽丽. 虎杖调控脂质代谢治疗呼吸道合胞病毒感染肺纤维化小鼠模型的研究[J]. 南京中医药大学学报, 2023, 39(7): 618-628. doi: 10.14148/j.issn.1672-0482.2023.0618
引用本文: 陈佳斌, 张梦瑶, 王单, 黄同杏, 单进军, 杨珺超, 宋康, 林丽丽. 虎杖调控脂质代谢治疗呼吸道合胞病毒感染肺纤维化小鼠模型的研究[J]. 南京中医药大学学报, 2023, 39(7): 618-628. doi: 10.14148/j.issn.1672-0482.2023.0618
CHEN Jia-bin, ZHANG Meng-yao, WANG Dan, HUANG Tong-xing, SHAN Jin-jun, YANG Jun-chao, SONG Kang, LIN Li-li. Study on Lipid Metabolism Regulated by Polygonum Cuspidatum in the Treatment of Pulmonary Fibrosis Model of Respiratory Syncytial Virus Infection in Mice[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(7): 618-628. doi: 10.14148/j.issn.1672-0482.2023.0618
Citation: CHEN Jia-bin, ZHANG Meng-yao, WANG Dan, HUANG Tong-xing, SHAN Jin-jun, YANG Jun-chao, SONG Kang, LIN Li-li. Study on Lipid Metabolism Regulated by Polygonum Cuspidatum in the Treatment of Pulmonary Fibrosis Model of Respiratory Syncytial Virus Infection in Mice[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(7): 618-628. doi: 10.14148/j.issn.1672-0482.2023.0618

虎杖调控脂质代谢治疗呼吸道合胞病毒感染肺纤维化小鼠模型的研究

doi: 10.14148/j.issn.1672-0482.2023.0618
基金项目: 

国家自然科学基金面上项目 81774231

国家自然科学基金面上项目 82174300

国家自然科学基金青年科学基金项目 81904254

江苏省大学生创新创业计划 202210315098Z

详细信息
    作者简介:

    陈佳斌, 男, 博士研究生, E-mail: chrischenj@126.com

    通讯作者:

    林丽丽, 女, 讲师, 主治中医师, 主要从事小儿肺系疾病研究, E-mail: linnj@njucm.edu.cn

    宋康, 男, 主任中医师, 教授, 主要从事呼吸系统疾病研究, E-mail: songk77@hotmail.com

  • 中图分类号: R285.5

Study on Lipid Metabolism Regulated by Polygonum Cuspidatum in the Treatment of Pulmonary Fibrosis Model of Respiratory Syncytial Virus Infection in Mice

  • 摘要:   目的  研究虎杖对呼吸道合胞病毒(Respiratory syncytial virus, RSV)感染的肺纤维化小鼠肺组织脂质代谢及炎症过程的影响。  方法  采用50 μL RSV病毒液(4×106 PFU · mL-1)联合博来霉素(Bleomycin, 2 mg · mL-1)气管滴注C57BL/6雄性小鼠, 建立RSV感染肺纤维化小鼠模型, 小鼠随机分为空白组、博来霉素诱导肺纤维化组、RSV感染肺纤维化组、虎杖(4.55 g · kg-1 · d-1)治疗组。造模第21天后采集各组小鼠的肺组织, 观察其病理改变及检测白细胞介素(IL)-6、肿瘤坏死因子(TNF)-α等炎症因子水平, 同时采用超高效液相色谱-四极杆-静电场轨道阱高分辨质谱联用(UPLC-Q Exactive Orbitrap/MS)技术进行脂质组学分析。  结果  与空白组相比, 博来霉素诱导肺纤维化组和RSV感染肺纤维化组肺组织病理可见明显胶原纤维沉积及炎症浸润, 伴肺部炎症因子如IL-6、TNF-α水平显著升高(P < 0.05)。与博来霉素诱导肺纤维化组相比, RSV感染肺纤维化组呈现显著脂质代谢异常(P < 0.05), 具体表现为神经酰胺(Cer)、磷脂酰胆碱(PC)、磷脂酰乙醇胺(PE)、磷脂酰肌醇(PI)、酰基乙醇胺(NAE)、鞘磷脂(SM)、甘油二酯(DG)、甘油三酯(TG)、心磷脂(CL)、脂肪酸(FA)等脂质代谢紊乱。经虎杖(4.55 g · kg-1 · d-1)干预后, 上述指标均呈现显著回调趋势。  结论  RSV可加重肺纤维化进程, 虎杖通过调控脂质代谢, 减轻RSV感染肺纤维化小鼠的肺组织炎症反应和胶原沉积, 改善小鼠肺组织纤维化进程。

     

  • 图  1  各组病理HE、Masson染色结果(×200)

    Figure  1.  Results of pathology in different groups using HE and Masson staining(×200)

    图  2  各组小鼠肺组织肺纤维化程度比较

    注: 与空白组比较, * *P < 0.01;与博来霉素诱导肺纤维化组比较, #P < 0.05;与RSV感染肺纤维化组比较, △△△P < 0.001。

    Figure  2.  Comparison of pulmonary fibrosis degree in lung tissue of mice in each group

    图  3  各组小鼠肺组织IL-6、TNF-α水平比较

    注: 与空白组比较, *P < 0.05, * * *P < 0.001;与RSV感染肺纤维化组比较, P < 0.05, △△△P < 0.001。

    Figure  3.  Comparison of IL-6 and TNF-α levels in lung tissue of mice in each group

    图  4  QC样本和各组小鼠肺组织PCA图

    注: A.正离子模式; B.负离子模式

    Figure  4.  PCA of lung tissue in different groups of QC samples

    图  5  小鼠肺组织总离子流图

    注: A.正离子模式; B.负离子模式

    Figure  5.  Total ion chromatograms (TIC) of mouse lung tissue

    图  6  各组小鼠肺组织PCA图

    注: C.空白组; BL.博来霉素诱导肺纤维化组; RB.RSV感染肺纤维化组; RBH.虎杖(4.55 g·kg-1·d-1)治疗组

    Figure  6.  PCA of lung tissue in different groups of mice

    图  7  RSV感染肺纤维化小鼠肺组织差异性脂质热图

    注: 热图中红色代表上调趋势;蓝色代表下调趋势; C.空白组; BL.博来霉素诱导肺纤维化组; RB.RSV感染肺纤维化组

    Figure  7.  Differential lipid heatmap of lung tissue in RSV-infected mice with pulmonary fibrosis

    图  8  虎杖干预后RSV感染肺纤维化小鼠肺组织差异性脂质热图

    注: 红色代表上调趋势;蓝色代表下调趋势; C.空白组; RB.RSV感染肺纤维化组; RBH.虎杖(4.55 g·kg-1·d-1) 治疗组

    Figure  8.  Differential lipid heatmap of lung tissue of RSV-infected mice with pulmonary fibrosis after intervention of Polygonum Cuspidatum

    表  1  RSV感染肺纤维化小鼠肺组织差异性脂质

    Table  1.   Differential lipids in lung tissue of RSV-infected mice with pulmonary fibrosis

    差异性脂质 保留时间/min 质荷比
    m/z
    加和离子 化学结构式 博来霉素诱导肺纤维化组/空白组 RSV感染肺纤维化组/
    博来霉素诱导肺纤维化组
    FC P FC P
    FA 20∶3;4O 0.53 369.229 9 [M-H]- C20H34O6 0.83 0.002 2 1.50 0.004 3
    FA 18∶1;3O 0.55 329.234 1 [M-H]- C18H34O5 0.57 0.002 2 1.82 0.002 2
    LPE 20∶5 0.62 500.279 6 [M+H]+ C25H42NO7P 0.58 0.026 0 7.78 0.002 2
    NAE 14∶0 0.79 272.259 1 [M+H]+ C16H33NO2 1.82 0.002 2 1.93 0.015 2
    FA 16∶1;O 0.81 269.212 3 [M-H]- C16H30O3 0.78 0.015 2 1.68 0.002 2
    FA 18∶1;O 1.19 297.243 6 [M-H]- C18H34O3 0.77 0.015 2 1.34 0.026 0
    DG 40∶6 3.06 691.531 3 [M+Na]+ C43H72O5 0.51 0.041 1 7.73 0.002 2
    DG 16∶0_24∶6 3.06 686.574 7 [M+NH4]+ C43H72O5 0.36 0.041 1 14.33 0.002 2
    PC 39∶9 3.78 836.547 9 [M+Na]+ C47H76NO8P 0.59 0.008 7 5.04 0.002 2
    NAE 23∶1 4.17 396.382 7 [M+H]+ C25H49NO2 0.71 0.002 2 3.66 0.002 2
    PI 38∶6 4.94 900.553 7 [M+NH4]+ C47H79O13P 1.79 0.015 2 1.80 0.041 1
    PI 16∶0_22∶6 5.05 881.515 8 [M-H]- C47H79O13P 2.07 0.015 2 1.36 0.004 3
    PI 18∶0_18∶2 5.69 861.553 4 [M-H]- C45H83O13P 27.19 0.041 1 1.61 0.041 1
    PC 14∶0_16∶0 5.73 706.536 8 [M+H]+ C38H76NO8P 2.83 0.004 3 1.83 0.015 2
    PI 40∶5 5.74 930.607 2 [M+NH4]+ C49H85O13P 0.52 0.008 7 1.60 0.015 2
    CL 20∶4_22∶6_22∶6_22∶6 6.36 807.486 3 [M-2H]2- C95H142O17P2 1.19 0.041 1 0.76 0.041 1
    PE 18∶0_22∶6 6.56 790.536 6 [M-H]- C45H78NO8P 0.82 0.041 1 0.83 0.008 7
    PE O-18∶1_20∶3 7.35 752.563 4 [M-H]- C43H80NO7P 0.48 0.015 2 0.29 0.002 2
    SM 42∶2;2O 7.49 835.665 2 [M+Na]+ C47H93N2O6P 0.31 0.015 2 3.81 0.026 0
    PE O-20∶1_22∶5 7.81 804.588 0 [M-H]- C47H84NO7P 0.78 0.026 0 0.49 0.002 2
    PC O-39∶0 8.60 818.691 4 [M+H]+ C47H96NO7P 0.35 0.015 2 3.55 0.015 2
    TG 14∶0_16∶0_18∶2;2O 8.64 852.731 6 [M+NH4]+ C51H94O8 1.87 0.041 1 2.65 0.026 0
    TG 16∶0_18∶2_18∶3 10.60 870.747 3 [M+NH4]+ C55H96O6 2.18 0.026 0 0.34 0.015 2
    TG 18∶2_18∶2_20∶4 10.63 920.766 7 [M+NH4]+ C59H98O6 1.19 0.041 1 0.48 0.002 2
    TG 18∶1_18∶2_18∶3 10.95 896.768 3 [M+NH4]+ C57H98O6 2.18 0.041 1 0.40 0.026 0
    TG 16∶0_18∶1_22∶6 11.30 922.789 0 [M+NH4]+ C59H100O6 1.94 0.008 7 0.57 0.008 7
    TG 16∶0_18∶2_20∶4 11.31 896.770 0 [M+NH4]+ C57H98O6 2.24 0.004 3 0.45 0.004 3
    TG O-22∶1_18∶5_18∶5 11.48 933.721 7 [M+Na]+ C61H98O5 1.27 0.041 1 0.41 0.002 2
    TG 18∶1_18∶1_20∶4 11.55 924.805 1 [M+NH4]+ C59H102O6 1.85 0.026 0 0.37 0.002 2
    TG 16∶0_18∶0_18∶0 12.59 880.825 6 [M+NH4]+ C55H106O6 2.23 0.002 2 1.65 0.041 1
    TG 16∶0_18∶2_18∶2 12.85 872.771 4 [M+NH4]+ C55H98O6 1.95 0.026 0 0.41 0.015 2
    TG 18∶1_34∶1_18∶2 13.21 1 125.055 1 [M+NH4]+ C73H134O6 0.36 0.041 1 0.30 0.015 2
    注: 统计方法采用非参数检验法(Kruskal-Wallis test), 根据FCP值筛选差异性代谢物。选取P < 0.05, 当FC>1.2或FC < 0.83, 提示该代谢物具有统计学意义。
    下载: 导出CSV

    表  2  虎杖干预后RSV感染肺纤维化小鼠肺组织差异性脂质

    Table  2.   Differential lipids in lung tissue of RSV-infected mice with pulmonary fibrosis after intervention of Polygonum Cuspidatum

    差异性脂质 保留时间/min 质荷比
    m/z
    加和离子 化学结构式 RSV感染肺纤维化组/空白组 虎杖(4.55 g·kg-1·d-1)治疗组/RSV感染肺纤维化组
    FC FDR FC FDR
    NAGly 16∶1;O 0.49 328.244 6 [M+H]+ C18H33NO4 3.25 0.033 2 0.11 0.004 1
    LPE 20∶5 0.62 500.279 6 [M+H]+ C25H42NO7P 4.50 0.033 2 0.30 0.004 1
    FA 16∶0;2O 0.67 287.224 5 [M-H]- C16H32O4 0.52 0.010 1 3.44 0.025 4
    NAE 16∶2 0.70 296.255 8 [M+H]+ C18H33NO2 2.69 0.042 5 0.26 0.004 1
    NAE 16∶0 0.71 300.288 4 [M+H]+ C18H37NO2 2.37 0.042 5 0.14 0.004 1
    NAE 14∶0 0.79 272.259 1 [M+H]+ C16H33NO2 3.51 0.033 2 0.16 0.004 1
    NAE 18∶2 1.02 324.287 6 [M+H]+ C20H37NO2 3.44 0.033 2 0.15 0.004 1
    LPE 20∶4 1.17 500.277 0 [M-H]- C25H44NO7P 1.53 0.010 1 1.43 0.016 5
    LPE 22∶5 1.27 528.310 6 [M+H]+ C27H46NO7P 2.01 0.042 5 0.29 0.004 1
    NAE 20∶1 1.40 354.334 6 [M+H]+ C22H43NO2 4.64 0.033 2 0.09 0.004 1
    LPC 18∶1 1.68 522.355 8 [M+H]+ C26H52NO7P 2.92 0.033 2 0.13 0.004 1
    NAE 21∶1 2.34 368.350 6 [M+H]+ C23H45NO2 3.65 0.042 5 0.12 0.004 1
    DG 42∶10 3.72 711.499 6 [M+Na]+ C45H68O5 3.92 0.033 2 0.08 0.004 1
    DG 30∶3 3.81 557.414 0 [M+Na]+ C33H58O5 2.81 0.042 5 0.13 0.004 1
    PC O-38∶9 3.83 786.530 6 [M+H]+ C46H76NO7P 4.46 0.033 2 0.38 0.037 1
    PC O-40∶9 3.87 814.562 0 [M+H]+ C48H80NO7P 3.15 0.042 5 0.15 0.004 1
    DG 46∶9 3.97 769.575 1 [M+Na]+ C49H78O5 4.41 0.042 5 0.24 0.022 4
    SM 38∶7;2O 4.15 747.529 9 [M+H]+ C43H75N2O6P 3.40 0.033 2 0.11 0.004 1
    DG 38∶8 4.20 659.481 9 [M+Na]+ C41H64O5 2.96 0.033 2 0.14 0.004 1
    PC O-42∶10 4.47 840.574 6 [M+H]+ C50H82NO7P 3.88 0.042 5 0.25 0.022 4
    PG 18∶2_22∶6 4.63 817.500 4 [M-H]- C46H75O10P 1.71 0.010 1 0.61 0.016 5
    BMP 18∶2_20∶4 4.72 812.544 8 [M+NH4]+ C44H75O10P 4.07 0.033 2 0.11 0.004 1
    PG 18∶2_18∶2 4.78 769.502 9 [M-H]- C42H75O10P 1.71 0.010 1 0.57 0.016 5
    PC O-42∶9 4.80 842.590 0 [M+H]+ C50H84NO7P 4.13 0.033 2 0.15 0.004 1
    PI 16∶0_22∶6 5.05 881.515 8 [M-H]- C47H79O13P 2.80 0.010 1 0.64 0.016 5
    PG 18∶2_22∶4 5.08 821.532 4 [M-H]- C46H79O10P 3.84 0.010 1 0.57 0.025 4
    PC 32∶3 5.09 728.518 8 [M+H]+ C40H74NO8P 2.81 0.042 5 0.01 0.004 1
    PC 14∶0_14∶0 5.11 678.506 4 [M+H]+ C36H72NO8P 2.46 0.033 2 0.18 0.004 1
    SM 42∶4;3O 5.19 825.650 8 [M+H]+ C47H89N2O7P 4.04 0.042 5 0.16 0.004 1
    PC 30∶1 5.22 704.519 0 [M+H]+ C38H74NO8P 3.02 0.033 2 0.18 0.004 1
    PG 16∶0_22∶6 5.23 793.504 4 [M-H]- C44H75O10P 0.64 0.010 1 1.71 0.016 5
    BMP 18∶1_18∶2 5.24 790.557 5 [M+NH4]+ C42H77O10P 4.05 0.033 2 0.08 0.004 1
    PI 16∶0_18∶2 5.26 833.520 8 [M-H]- C43H79O13P 1.52 0.010 1 0.52 0.016 5
    PE 16∶0_20∶3;2O 5.28 772.518 7 [M-H]- C41H76NO10P 1.49 0.010 1 0.64 0.037 6
    PC 16∶1_16∶1 5.34 730.536 7 [M+H]+ C40H76NO8P 2.65 0.033 2 0.17 0.004 1
    PI 18∶1_18∶2 5.35 859.537 8 [M-H]- C45H81O13P 1.60 0.010 1 0.63 0.025 4
    DG 28∶2 5.37 531.410 1 [M+Na]+ C31H56O5 2.53 0.042 5 0.41 0.013 4
    SM 42∶3;3O 5.56 827.656 3 [M+H]+ C47H91N2O7P 4.64 0.033 2 0.31 0.013 4
    PI 34∶1 5.69 854.567 8 [M+NH4]+ C43H81O13P 3.19 0.042 5 0.15 0.004 1
    PC 14∶0_16∶0 5.73 706.536 8 [M+H]+ C38H76NO8P 5.18 0.033 2 0.24 0.004 1
    SMGDG 40∶10 5.81 887.507 0 [M-H]- C49H76O12S 4.73 0.016 3 0.51 0.016 5
    SM 34∶0;2O 5.86 727.568 2 [M+Na]+ C39H81N2O6P 2.59 0.042 5 0.13 0.004 1
    PS 18∶0_16∶1 5.86 760.513 0 [M-H]- C40H76NO10P 0.83 0.041 1 1.54 0.016 5
    HexCer 18∶1;2O/16∶0 5.86 700.572 3 [M+H]+ C40H77NO8 3.50 0.033 2 0.19 0.004 1
    DG 39∶10 5.95 669.451 5 [M+Na]+ C42H62O5 4.23 0.042 5 0.28 0.037 1
    PC O-30∶0 6.13 692.561 7 [M+H]+ C38H78NO7P 2.94 0.033 2 0.17 0.004 1
    PI 36∶1 6.28 882.601 6 [M+NH4]+ C45H85O13P 2.89 0.042 5 0.12 0.004 1
    CL 18∶0_18∶0_28∶0_20∶3 6.32 812.583 9 [M-2H]2- C93H176O17P2 1.64 0.016 3 0.72 0.037 6
    PS 40∶4 6.33 840.573 8 [M+H]+ C46H82NO10P 0.34 0.042 5 0.43 0.022 4
    PE O-16∶1_22∶4 6.95 750.548 2 [M-H]- C43H78NO7P 0.30 0.010 1 2.10 0.025 4
    PE O-16∶1_18∶1 7.02 700.533 8 [M-H]- C39H76NO7P 0.67 0.010 1 1.30 0.037 6
    PS 18∶1_22∶1 7.15 842.589 4 [M-H]- C46H86NO10P 0.70 0.041 1 1.62 0.037 6
    PE O-18∶1_20∶4 7.20 750.541 6 [M-H]- C43H78NO7P 0.52 0.010 1 0.01 0.016 5
    PE 34∶0 7.20 742.535 1 [M+Na]+ C39H78NO8P 2.69 0.033 2 0.02 0.004 1
    PE O-18∶1_20∶3 7.35 752.563 4 [M-H]- C43H80NO7P 0.14 0.010 1 2.64 0.037 6
    PE 22∶5_16∶2;O 7.39 776.498 4 [M-H]- C43H72NO9P 1.92 0.016 3 0.07 0.016 5
    Cer 18∶2;2O/24∶2 7.42 644.600 8 [M+H]+ C42H77NO3 2.79 0.033 2 0.08 0.004 1
    DG 50∶9 7.75 825.624 3 [M+Na]+ C53H86O5 0.14 0.033 2 3.94 0.007 3
    PE O-20∶1_22∶5 7.81 804.588 0 [M-H]- C47H84NO7P 0.38 0.010 1 2.68 0.016 5
    SM 44∶2;2O 8.26 841.712 0 [M+H]+ C49H97N2O6P 2.88 0.033 2 0.01 0.004 1
    PE 18∶0_18∶0 8.39 746.581 1 [M-H]- C41H82NO8P 3.15 0.025 4 0.08 0.016 5
    HexCer 18∶1;2O/24∶0 8.59 812.698 7 [M+H]+ C48H93NO8 2.46 0.033 2 0.22 0.004 1
    Cer 18∶1;2O/24∶1 8.72 646.616 9 [M-H]- C42H81NO3 1.56 0.025 4 0.44 0.016 5
    Cer 20∶1;2O/32∶1;O 9.23 804.782 0 [M+H]+ C52H101NO4 6.24 0.033 2 0.02 0.004 1
    Cer 18∶0;2O/24∶0 9.48 652.660 8 [M+H]+ C42H85NO3 2.22 0.033 2 0.22 0.004 1
    Cer 20∶0;2O/24∶0 10.08 680.689 2 [M+H]+ C44H89NO3 2.26 0.042 5 0.38 0.004 1
    TG 18∶1_18∶2_22∶5 11.16 948.800 5 [M+NH4]+ C61H102O6 0.60 0.033 2 2.99 0.007 3
    TG O-22∶1_18∶5_18∶5 0.49 933.721 7 [M+Na]+ C61H98O5 3.25 0.033 2 0.11 0.004 1
    TG 18∶0_18∶1_22∶5 0.62 952.823 4 [M+NH4]+ C61H106O6 4.50 0.033 2 0.30 0.004 1
    TG 18∶0_18∶1_22∶4 0.67 954.843 8 [M+NH4]+ C61H108O6 0.52 0.010 1 3.44 0.025 4
    Cer 20∶2;2O/52∶3;2O 0.70 1 095.044 0 [M+H]+ C72H135NO5 2.69 0.042 5 0.26 0.004 1
    TG 18∶1_30∶1_18∶2 0.71 1 068.982 0 [M+NH4]+ C69H126O6 2.37 0.042 5 0.14 0.004 1
    TG 16∶1_18∶1_32∶1 0.79 1 071.007 0 [M+NH4]+ C69H128O6 3.51 0.033 2 0.16 0.004 1
    TG 18∶1_34∶1_18∶2 1.02 1 125.055 0 [M+NH4]+ C73H134O6 3.44 0.033 2 0.15 0.004 1
    注: 统计方法采用非参数检验法(Kruskal-Wallis test), 根据FCFDR值筛选差异性代谢物, FDR采用Benjamini & Hochberg检验法。选取FDR < 0.05, 当FC>1.2或FC < 0.83, 提示该代谢物具有统计学意义。
    下载: 导出CSV
  • [1] LI Y, WANG X, BLAU DM, et al. Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in children younger than 5 years in 2019: A systematic analysis[J]. Lancet, 2022, 399(10340): 2047-2064. doi: 10.1016/S0140-6736(22)00478-0
    [2] SHI T, DENOUEL A, TIETJEN AK, et al. Global disease burden estimates of respiratory syncytial virus-associated acute respiratory infection in older adults in 2015: A systematic review and meta-analysis[J]. J Infect Dis, 2020, 222(S7): S577-S583.
    [3] SOMAYAJI R, GOSS CH, KHAN U, et al. Cystic fibrosis pulmonary exacerbations attributable to respiratory syncytial virus and influenza: A population-based study[J]. Clin Infect Dis, 2017, 64(12): 1760-1767. doi: 10.1093/cid/cix203
    [4] WANG LN, CHENG W, ZHANG ZM. Respiratory syncytial virus infection accelerates lung fibrosis through the unfolded protein response in a bleomycin-induced pulmonary fibrosis animal model[J]. Mol Med Rep, 2017, 16(1): 310-316. doi: 10.3892/mmr.2017.6558
    [5] BALGOMA D, GIL-DE-GOMEZ L, MONTERO O. Lipidomics issues on human positive ssRNA virus infection: An update[J]. Metabolites, 2020, 10(9): 356. doi: 10.3390/metabo10090356
    [6] 李柏颖. 清热解毒澄其源: 宋康教授治疗特发性肺纤维化经验介绍[J]. 浙江中西医结合杂志, 2008, 18(6): 359-360. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJZH200806016.htm

    LI BY. Clearing away heat and toxic materials to clarify its source: Introduction of Professor Song Kang's experience in treating idiopathic pulmonary fibrosis[J]. Zhejiang J Integr Tradit Chin West Med, 2008, 18(6): 359-360. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJZH200806016.htm
    [7] 宋康, 骆仙芳, 杨珺超, 等. 虎杖对肺纤维化大鼠肺组织中TGF-β1表达的影响[J]. 中华中医药杂志, 2007, 22(12): 888-891. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY200712024.htm

    SONG K, LUO XF, YANG JC, et al. Effect of Rhizoma Polygoni Cuspidati on expression of TGF-β1 in rats with pulmonary fibrosis[J]. China J Tradit Chin Med Pharm, 2007, 22(12): 888-891. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY200712024.htm
    [8] 陈奇. 中药药理研究方法学[M]. 2版. 北京: 人民卫生出版社, 2006: 33.

    CHEN Q. Methodology of Pharmacological Research of Traditional Chinese Medicine[M]. 2nd ed. Beijing: People's medical publishing house, 2006: 33.
    [9] 纪建建, 杨瑞, 谢彤, 等. 基于高分辨率质谱的金欣口服液治疗小鼠RSV感染的血清脂质组学研究[J]. 南京中医药大学学报, 2019, 35(1): 78-84. http://xb.njucm.edu.cn/article/id/zr20190118

    JI JJ, YANG R, XIE T, et al. Lipomics study of Jinxin oral liquid for RSV infection in mice based on UHPLC-Q-exactive orbitrap/MS[J]. J Nanjing Univ Tradit Chin Med, 2019, 35(1): 78-84. http://xb.njucm.edu.cn/article/id/zr20190118
    [10] 王璇, 徐泳, 罗子宸, 等. 基于网络药理学探索桔梗治疗肺纤维化的作用机制[J]. 药学学报, 2021, 56(11): 2957-2967. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXB202111010.htm

    WANG X, XU Y, LUO ZC, et al. Mechanism of Platycodon grandiflorum in the treatment of pulmonary fibrosis based on network pharmacology[J]. Acta Pharm Sin, 2021, 56(11): 2957-2967. https://www.cnki.com.cn/Article/CJFDTOTAL-YXXB202111010.htm
    [11] MEYER KC. Pulmonary fibrosis, part Ⅰ: Epidemiology, pathogenesis, and diagnosis[J]. Expert Rev Respir Med, 2017, 11(5): 343-359.
    [12] THANNICKAL VJ, TOEWS GB, WHITE ES, et al. Mechanisms of pulmonary fibrosis[J]. Annu Rev Med, 2004, 55: 395-417. doi: 10.1146/annurev.med.55.091902.103810
    [13] AN L, LU MJ, XU WC, et al. Qingfei oral liquid alleviates RSV-induced lung inflammation by promoting fatty-acid-dependent M1/M2 macrophage polarization via the Akt signaling pathway[J]. J Ethnopharmacol, 2022, 298: 115637. doi: 10.1016/j.jep.2022.115637
    [14] GROSS R, HAN XL. Lipidomics at the interface of structure and function in systems biology[J]. Chem Biol, 2011, 18(3): 284-291. doi: 10.1016/j.chembiol.2011.01.014
    [15] SURYADEVARA V, RAMCHANDRAN R, KAMP DW, et al. Lipid mediators regulate pulmonary fibrosis: Potential mechanisms and signaling pathways[J]. Int J Mol Sci, 2020, 21(12): 4257. doi: 10.3390/ijms21124257
    [16] BURGY O, LORIOD S, BELTRAMO G, et al. Extracellular lipids in the lung and their role in pulmonary fibrosis[J]. Cells, 2022, 11(7): 1209. doi: 10.3390/cells11071209
    [17] HUANG LS, SUDHADEVI T, FU PF, et al. Sphingosine kinase 1/S1P signaling contributes to pulmonary fibrosis by activating hippo/YAP pathway and mitochondrial reactive oxygen species in lung fibroblasts[J]. Int J Mol Sci, 2020, 21(6): 2064.
    [18] HO LTY, SKIBA N, ULLMER C, et al. Lysophosphatidic acid induces ECM production via activation of the mechanosensitive YAP/TAZ transcriptional pathway in trabecular meshwork cells[J]. Invest Ophthalmol Vis Sci, 2018, 59(5): 1969-1984.
    [19] ROMERO F, SHAH D, DUONG M, et al. A pneumocyte-macrophage paracrine lipid axis drives the lung toward fibrosis[J]. Am J Respir Cell Mol Biol, 2015, 53(1): 74-86.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  52
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-07
  • 网络出版日期:  2023-07-15
  • 发布日期:  2023-07-10

目录

    /

    返回文章
    返回