留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

肠道菌群与儿童呼吸系统疾病

杨斌 纪建建 钱桂英 时晨 单进军

杨斌, 纪建建, 钱桂英, 时晨, 单进军. 肠道菌群与儿童呼吸系统疾病[J]. 南京中医药大学学报, 2023, 39(6): 594-600. doi: 10.14148/j.issn.1672-0482.2023.0594
引用本文: 杨斌, 纪建建, 钱桂英, 时晨, 单进军. 肠道菌群与儿童呼吸系统疾病[J]. 南京中医药大学学报, 2023, 39(6): 594-600. doi: 10.14148/j.issn.1672-0482.2023.0594
YANG Bin, JI Jian-jian, QIAN Gui-ying, SHI Chen, SHAN Jin-jun. Gut Microbiota and Respiratory Diseases in Children[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(6): 594-600. doi: 10.14148/j.issn.1672-0482.2023.0594
Citation: YANG Bin, JI Jian-jian, QIAN Gui-ying, SHI Chen, SHAN Jin-jun. Gut Microbiota and Respiratory Diseases in Children[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(6): 594-600. doi: 10.14148/j.issn.1672-0482.2023.0594

肠道菌群与儿童呼吸系统疾病

doi: 10.14148/j.issn.1672-0482.2023.0594
基金项目: 

国家自然科学基金面上项目 82174098

江苏高校“青蓝工程”资助项目 

江苏省高等学校自然科学研究面上项目 20KJB320018

苏州科技局指导性项目 SYSD2019020

常熟市卫健委资助性重点项目 csws201932

详细信息
    作者简介:

    杨斌, 男, 硕士研究生, E-mail: 20210132@njucm.edu.cn

    通讯作者:

    单进军, 男,教授,主要从事代谢组学与中医药研究,E-mail: dfsjj@163.com

    时晨,女,讲师,主要从事炎症与免疫相关性研究,E-mail: shichen@njucm.edu.cn

  • 中图分类号: R285.5

Gut Microbiota and Respiratory Diseases in Children

  • 摘要: 近年来, 随着呼吸系统疾病与肠道菌群相关性研究的增多, 中医“肺与大肠相表里”理论和现代医学“肺-肠”轴概念逐渐受到国内外学者的重视。对感染性肺炎、哮喘、过敏性鼻炎等儿童呼吸系统常见病与肠道菌群的相互影响进行了归纳总结, 并结合中医药诊治理念及方法为中医理论“肺与大肠相表里”的科学阐释提供参考。

     

  • 图  1  中药调控肠道菌群治疗儿童呼吸系统疾病

    Figure  1.  Chinese medicine regulates gut microbiome to treat respiratory diseases in children

  • [1] 韩卓君, 吴小平, 严明煜, 等. 中药与肠道菌群相互作用机制探讨[J]. 世界中医药, 2021, 16(24): 3591-3595. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZA202124004.htm

    HAN ZJ, WU XP, YAN MY, et al. Mechanism of interaction between traditional Chinese medicine and intestinal flora[J]. World Chin Med, 2021, 16(24): 3591-3595. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZA202124004.htm
    [2] LOZUPONE CA, STOMBAUGH JI, GORDON JI, et al. Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489(7415): 220-230. doi: 10.1038/nature11550
    [3] VENTURA M, TURRONI F, CANCHAYA C, et al. Microbial diversity in the human intestine and novel insights from metagenomics[J]. Front Biosci (Landmark Ed), 2009, 14(9): 3214-3221.
    [4] BOKULICH NA, CHUNG J, BATTAGLIA T, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life[J]. Sci Transl Med, 2016, 8(343): 343ra82.
    [5] DERRIEN M, ALVAREZ AS, DE VOS WM. The gut microbiota in the first decade of life[J]. Trends Microbiol, 2019, 27(12): 997-1010. doi: 10.1016/j.tim.2019.08.001
    [6] RONAN V, YEASIN R, CLAUD EC. Childhood development and the microbiome-the intestinal microbiota in maintenance of health and development of disease during childhood development[J]. Gastroenterology, 2021, 160(2): 495-506. doi: 10.1053/j.gastro.2020.08.065
    [7] GOULET O, HOJSAK I, KOLACEK S, et al. Paediatricians play a key role in preventing early harmful events that could permanently influence the development of the gut microbiota in childhood[J]. Acta Paediatr, 2019, 108(11): 1942-1954. doi: 10.1111/apa.14900
    [8] RUAN W, ENGEVIK MA, SPINLER JK, et al. Healthy human gastrointestinal microbiome: Composition and function after a decade of exploration[J]. Dig Dis Sci, 2020, 65(3): 695-705. doi: 10.1007/s10620-020-06118-4
    [9] MUKHOPADHYA I, SEGAL JP, CARDING SR, et al. The gut virome: The 'missing link' between gut bacteria and host immunity?[J]. Therap Adv Gastroenterol, 2019, 12: 1756284819836620.
    [10] PANNARAJ PS, LI F, CERINI C, et al. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome[J]. JAMA Pediatr, 2017, 171(7): 647-654. doi: 10.1001/jamapediatrics.2017.0378
    [11] 王宪正, 赵霞, 狄留庆, 等. "肺与大肠相表里"的研究进展[J]. 世界科学技术-中医药现代化, 2020, 22(3): 850-855. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX202003049.htm

    WANG XZ, ZHAO X, DI LQ, et al. Research progress of "superficies-interior relationship between lung and large intestine"[J]. Mod Tradit Chin Med Mater Med World Sci Technol, 2020, 22(3): 850-855. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX202003049.htm
    [12] VAUGHAN A, FRAZER ZA, HANSBRO PM, et al. COPD and the gut-lung axis: The therapeutic potential of fibre[J]. J Thorac Dis, 2019, 11(S17): S2173-S2180. doi: 10.21037/jtd.2019.10.40
    [13] FRATI F, SALVATORI C, INCORVAIA C, et al. The role of the microbiome in asthma: The Gut-Lung axis[J]. Int J Mol Sci, 2018, 20(1): 123. doi: 10.3390/ijms20010123
    [14] YAP YA, MARINO E. An insight into the intestinal web of mucosal immunity, microbiota, and diet in inflammation[J]. Front Immunol, 2018, 9: 2617. doi: 10.3389/fimmu.2018.02617
    [15] AMOROSO C, PERILLO F, STRATI F, et al. The role of gut microbiota biomodulators on mucosal immunity and intestinal inflammation[J]. Cells, 2020, 9(5): 1234. doi: 10.3390/cells9051234
    [16] KOSIEWICZ MM, ZIRNHELD AL, ALARD P. Gut microbiota, immunity, and disease: A complex relationship[J]. Front Microbiol, 2011, 2: 180.
    [17] KAETZEL CS. Cooperativity among secretory IgA, the polymeric immunoglobulin receptor, and the gut microbiota promotes host-microbial mutualism[J]. Immunol Lett, 2014, 162(2 Pt A): 10-21.
    [18] AZAD MB, KONYA T, GUTTMAN DS, et al. Infant gut microbiota and food sensitization: Associations in the first year of life[J]. Clin Exp Allergy, 2015, 45(3): 632-643. doi: 10.1111/cea.12487
    [19] RACHID R, CHATILA TA. The role of the gut microbiota in food allergy[J]. Curr Opin Pediatr, 2016, 28(6): 748-753. doi: 10.1097/MOP.0000000000000427
    [20] HAKANSSON A, MOLIN G. Gut microbiota and inflammation[J]. Nutrients, 2011, 3(6): 637-682. doi: 10.3390/nu3060637
    [21] MORRISON DJ, PRESTON T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut Microbes, 2016, 7(3): 189-200. doi: 10.1080/19490976.2015.1134082
    [22] MCKENZIE C, TAN J, MACIA L, et al. The nutrition-gut microbiome-physiology axis and allergic diseases[J]. Immunol Rev, 2017, 278(1): 277-295. doi: 10.1111/imr.12556
    [23] RATAJCZAK W, RYL A, MIZERSKI A, et al. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs)[J]. Acta Biochim Pol, 2019, 66(1): 1-12.
    [24] KIM CH, PARK J, KIM M. Gut microbiota-derived short-chain fatty acids, T cells, and inflammation[J]. Immune Netw, 2014, 14(6): 277. doi: 10.4110/in.2014.14.6.277
    [25] SENCIO V, GALLERAND A, GOMES MACHADO M, et al. Influenza virus infection impairs the gut's barrier properties and favors secondary enteric bacterial infection through reduced production of short-chain fatty acids[J]. Infect Immun, 2021, 89(9): e0073420. doi: 10.1128/IAI.00734-20
    [26] SIVAPRAKASAM S, PRASAD PD, SINGH N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis[J]. Pharmacol Ther, 2016, 164: 144-151. doi: 10.1016/j.pharmthera.2016.04.007
    [27] NEGI S, DAS DK, PAHARI S, et al. Potential role of gut microbiota in induction and regulation of innate immune memory[J]. Front Immunol, 2019, 10: 2441. doi: 10.3389/fimmu.2019.02441
    [28] IWAMURA C, NAKAYAMA T. Toll-like receptors in the respiratory system: Their roles in inflammation[J]. Curr Allergy Asthma Rep, 2008, 8(1): 7-13. doi: 10.1007/s11882-008-0003-0
    [29] DOWLING D, HAMILTON CM, O'NEILL SM. A comparative analysis of cytokine responses, cell surface marker expression and MAPKs in DCs matured with LPS compared with a panel of TLR ligands[J]. Cytokine, 2008, 41(3): 254-262. doi: 10.1016/j.cyto.2007.11.020
    [30] PAMP SJ, HARRINGTON ED, QUAKE SR, et al. Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB)[J]. Genome Res, 2012, 22(6): 1107-1119. doi: 10.1101/gr.131482.111
    [31] IVANOV Ⅱ, ATARASHI K, MANEL N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria[J]. Cell, 2009, 139(3): 485-498. doi: 10.1016/j.cell.2009.09.033
    [32] GAUGUET S, D'ORTONA S, AHNGER-PIER K, et al. Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia[J]. Infect Immun, 2015, 83(10): 4003-4014. doi: 10.1128/IAI.00037-15
    [33] MCALEER J, NGUYEN N, CHEN K, et al. Pulmonary Th17 immunity is regulated by regenerating islet-derived Ⅲ-γ and the gut microbiome (MUC4P. 826)[J]. J Immunol, 2014, 192(S1): 133.2.
    [34] 肖锶瑶, 张纾难. 肠道菌群和呼吸系统疾病相关性的研究进展[J]. 中国全科医学, 2021, 24(9): 1165-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-QKYX202109050.htm

    XIAO SY, ZHANG SN. Recent advances in the relationship between intestinal flora and respiratory diseases[J]. Chin Gen Pract, 2021, 24(9): 1165-1172. https://www.cnki.com.cn/Article/CJFDTOTAL-QKYX202109050.htm
    [35] WANG HP, ZHOU QA, DAI WK, et al. Lung microbiota and pulmonary inflammatory cytokines expression vary in children with tracheomalacia and adenoviral or Mycoplasma pneumoniae pneumonia[J]. Front Pediatr, 2019, 7: 265. doi: 10.3389/fped.2019.00265
    [36] WANG LL, XU DG, HUANG Q, et al. Characterization of tonsil microbiota and their effect on adenovirus reactivation in tonsillectomy samples[J]. Microbiol Spectr, 2021, 9(2): e0124621. doi: 10.1128/Spectrum.01246-21
    [37] 陈楠楠. 蒲辅周仲景经方医案研究[D]. 北京: 北京中医药大学, 2020.

    CHEN NN. Study on medical records of Zhongjing classic prescriptions in Pu Fuzhou[D]. Beijing: Beijing University of Chinese Medicine, 2020.
    [38] SENCIO V, GALLERAND A, GOMES MACHADO M, et al. Influenza virus infection impairs the gut's barrier properties and favors secondary enteric bacterial infection through reduced production of short-chain fatty acids[J]. Infect Immun, 2021, 89(9): e0073420. doi: 10.1128/IAI.00734-20
    [39] ZHANG Q, HU J, FENG JW, et al., Influenza infection elicits an expansion of gut population of endogenous Bifidobacterium animalis which protects mice against infection[J]. Genome biology, 2020, 21(1): 1-26. doi: 10.1186/s13059-019-1906-x
    [40] BAE JY, KIM JI, PARK S, et al. Effects of Lactobacillus plantarum and Leuconostoc mesenteroides probiotics on human seasonal and avian influenza viruses[J]. J Microbiol Biotechnol, 2018, 28(6): 893-901. doi: 10.4014/jmb.1804.04001
    [41] XING JH, SHI CW, SUN MJ, et al. Lactiplantibacillus plantarum 0111 protects against influenza virus by modulating intestinal microbial-mediated immune responses[J]. Front Microbiol, 2022, 13: 820484. doi: 10.3389/fmicb.2022.820484
    [42] STEED AL, CHRISTOPHI GP, KAIKO GE, et al. The microbial metabolite desaminotyrosine protects from influenza through type Ⅰ interferon[J]. Science, 2017, 357(6350): 498-502. doi: 10.1126/science.aam5336
    [43] 张思依, 吕文亮. 中医药防治病毒性肺炎的临床研究进展[J]. 湖北中医药大学学报, 2020, 22(4): 125-129. https://www.cnki.com.cn/Article/CJFDTOTAL-HZXX202004035.htm

    ZHANG SY, LYU WL. Progress of clinical research on prevention and treatment of viral pneumonia by traditional Chinese medicine[J]. J Hubei Univ Chin Med, 2020, 22(4): 125-129. https://www.cnki.com.cn/Article/CJFDTOTAL-HZXX202004035.htm
    [44] 徐镠粤. 复方中药、益生菌对肠道菌群失调流感小鼠肺中免疫细胞TLR7/NF-κB信号通路的影响[D]. 广州: 暨南大学, 2021.

    XU LY. Effects of traditional Chinese medicine and probiotics on TLR7/NF-κB signal pathway of immune cells in lung of influenza mice with intestinal flora imbalance[D]. Guangzhou: Jinan University, 2021.
    [45] 南亚楠. 小檗碱对流感病毒导致肺肠损伤的保护作用及其机制的研究[D]. 北京: 北京中医药大学, 2021.

    NAN YN. Protective effect of berberine on lung and intestine injury caused by influenza virus and its mechanism[D]. Beijing: Beijing University of Chinese Medicine, 2021.
    [46] HARDINGJ, SIEFKER D, LUAN V, et al. Altered gut microbiota in infants is associated with respiratory syncytial virus disease severity[J]. BMC microbiology, 2020, 20(1): 1-11. doi: 10.1186/s12866-019-1672-7
    [47] GRIER A, KESSLER HA, CORBETTET A, et al. Temporal dysbiosis of infant nasal microbiota relative to respiratory syncytial virus infection[J]. J Infect Dis, 2021. 223(9): 1650-1658. doi: 10.1093/infdis/jiaa577
    [48] FONSECA W, LUCEY K, JANG S, et al. Lactobacillus johnsonii supplementation attenuates respiratory viral infection via metabolic reprogramming and immune cell modulation[J]. Mucosal Immunol, 2017, 10(6): 1569-1580. doi: 10.1038/mi.2017.13
    [49] 崔振泽, 徐超, 迟磊. 基于"肺肠理论"和胆汁酸代谢网络探讨定喘汤对呼吸道合胞病毒感染大鼠肠道菌群调节的研究[J]. 中国中西医结合儿科学, 2018, 10(6): 461-465, 553. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYEK201806002.htm

    CUI ZZ, XU C, CHI L. Study on Dingchuan Decoction based on "Lung-Intestine Theory" and bile acid metabolism network in the regulation of intestinal flora in rats with RSV infection[J]. Chin Pediatr Integr Tradit West Med, 2018, 10(6): 461-465, 553. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYEK201806002.htm
    [50] XU R, LIU PC, ZHANG T, et al. Progressive deterioration of the upper respiratory tract and the gut microbiomes in children during the early infection stages of COVID-19[J]. J Genet Genom, 2021, 48(9): 803-814. doi: 10.1016/j.jgg.2021.05.004
    [51] 杨映映, 李青伟, 鲍婷婷, 等. 仝小林院士辨治新型冠状病毒肺炎: "寒湿疫"辨治体系的形成、创新与发展[J]. 世界中医药, 2022, 17(6): 833-837, 842. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZA202206014.htm

    YANG YY, LI QW, BAO TT, et al. Syndrome differentiation and treatment of COVID-19 by academician Tong Xiaolin: Origin, innovation, and development of "cold-dampness plague" theory[J]. World Chin Med, 2022, 17(6): 833-837, 842. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZA202206014.htm
    [52] 于海洋, 秦忠, 李文, 等. 金水宝胶囊治疗新型冠状病毒肺炎后遗症的临床应用价值[J]. 西部中医药, 2022, 35(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-GSZY202204001.htm

    YU HY, QIN Z, LI W, et al. Clinical application value of Jinshuibao capsules in the treatment of sequelae of COVID-19[J]. West J Tradit Chin Med, 2022, 35(4): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-GSZY202204001.htm
    [53] SUN XZ, WANG DD, WEI LN, et al. Gut microbiota and SCFAs play key roles in QingFei Yin recipe anti-streptococcal pneumonia effects[J]. Front Cell Infect Microbiol, 2021, 11: 791466. doi: 10.3389/fcimb.2021.791466
    [54] SCHUIJT TJ, LANKELMA JM, SCICLUNA BP, et al. The gut microbiota plays a protective role in the host defence against pneumococcal pneumonia[J]. Gut, 2016, 65(4): 575-583. doi: 10.1136/gutjnl-2015-309728
    [55] LIU C, YANG LP, HAN Y, et al. Mast cells participate in regulation of lung-gut axis during Staphylococcus aureus pneumonia[J]. Cell Prolif, 2019, 52(2): e12565. doi: 10.1111/cpr.12565
    [56] WU T, XU FM, SU C, et al. Alterations in the gut microbiome and cecal metabolome during Klebsiella pneumoniae-induced pneumosepsis[J]. Front Immunol, 2020, 11: 1331. doi: 10.3389/fimmu.2020.01331
    [57] LIU Z, DONG WT, WEI WF, et al. Exploring the mechanism of Qinbaiqingfei-concentrate pills in the treatment of Mycoplasma pneumoniae pneumonia from the perspective of intestinal microbiota and mucosal immunity[J]. J Ethnopharmacol, 2022, 293: 115308. doi: 10.1016/j.jep.2022.115308
    [58] LING ZX, LIU XA, GUO S, et al. Role of probiotics in Mycoplasma pneumoniae pneumonia in children: A short-term pilot project[J]. Front Microbiol, 2019, 9: 3261. doi: 10.3389/fmicb.2018.03261
    [59] JOHNSON CC, OWNBY DR. The infant gut bacterial microbiota and risk of pediatric asthma and allergic diseases[J]. Transl Res, 2017, 179: 60-70. doi: 10.1016/j.trsl.2016.06.010
    [60] BOUTIN RC, PETERSEN C, WOODWARD SE, et al. Bacterial-fungal interactions in the neonatal gut influence asthma outcomes later in life[J]. eLife, 2021, 10: e67740. doi: 10.7554/eLife.67740
    [61] BISGAARD H, LI N, BONNELYKKE K, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age[J]. J Allergy Clin Immunol, 2011, 128(3): 646-652. doi: 10.1016/j.jaci.2011.04.060
    [62] NOVERR MC, HUFFNAGLE GB. Does the microbiota regulate immune responses outside the gut?[J]. Trends Microbiol, 2004, 12(12): 562-568. doi: 10.1016/j.tim.2004.10.008
    [63] 梁燕妮, 欧阳学认, 廖永州. 异功散对哮喘小鼠气道炎症反应和肠道菌群的影响[J]. 世界中医药, 2021, 16(10): 1534-1538. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZA202110008.htm

    LIANG YN, OUYANG XR, LIAO YZ. Effects of Yi Gong Powder on airway inflammation and intestinal flora in asthmatic mice[J]. World Chin Med, 2021, 16(10): 1534-1538. https://www.cnki.com.cn/Article/CJFDTOTAL-SJZA202110008.htm
    [64] 陈思敏, 吴秀艳, 彭桂英, 等. 基于16S rRNA测序研究芍药甘草汤对支气管哮喘小鼠肠道菌群的影响[J]. 北京中医药大学学报, 2022, 45(5): 492-499. https://www.cnki.com.cn/Article/CJFDTOTAL-JZYB202205010.htm

    CHEN SM, WU XY, PENG GY, et al. Based on 16S rRNA sequencing to study the effect of Shaoyao Gancao Decoction on the intestinal flora of bronchial asthma mice[J]. J Beijing Univ Tradit Chin Med, 2022, 45(5): 492-499. https://www.cnki.com.cn/Article/CJFDTOTAL-JZYB202205010.htm
    [65] 张贝贝, 曾梦楠, 张钦钦, 等. 葶苈大枣泻肺汤对哮喘大鼠免疫炎症和肠道菌群的影响[J]. 药学学报, 2022, 57(8): 2364-2377. doi: 10.16438/j.0513-4870.2022-0116

    ZHANG BB, ZENG MN, ZHANG QQ, et al. Effects of Tingli Dazao Xiefei Decoction on the immune inflammation and intestinal flora in asthmatic rats[J]. Acta Pharm Sin, 2022, 57(8): 2364-2377. doi: 10.16438/j.0513-4870.2022-0116
    [66] CHIU CY, CHAN YL, TSAI YS, et al. Airway microbial diversity is inversely associated with mite-sensitized rhinitis and asthma in early childhood[J]. Sci Rep, 2017, 7: 1820. doi: 10.1038/s41598-017-02067-7
    [67] HYUN DW, MIN HJ, KIM MS, et al. Dysbiosis of inferior turbinate microbiota is associated with high total IgE levels in patients with allergic rhinitis[J]. Infect Immun, 2018, 86(4): e00934-e00917.
    [68] 蒋星卓, 彭拥军, 徐疏影, 等. 基于肺与大肠相表里的针灸治疗变应性鼻炎肠道菌群研究进展[J]. 南京中医药大学学报, 2021, 37(1): 145-149. http://xb.njucm.edu.cn/article/id/7daa3c63-5db2-4818-ba7e-1313cdd3a600

    JIANG XZ, PENG YJ, XU SY, et al. Research progress of intestinal flora in acupuncture treatment of allergic rhinitis from the perspective of the lung and large intestine being interior-exteriorly related[J]. J Nanjing Univ Tradit Chin Med, 2021, 37(1): 145-149. http://xb.njucm.edu.cn/article/id/7daa3c63-5db2-4818-ba7e-1313cdd3a600
  • 加载中
图(1)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  52
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-05
  • 网络出版日期:  2023-06-12
  • 发布日期:  2023-06-10

目录

    /

    返回文章
    返回