留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中药调控铁死亡抑制肝纤维化的研究进展

李浩 吴勉华 马艳霞 李文婷 李沐涵

李浩, 吴勉华, 马艳霞, 李文婷, 李沐涵. 中药调控铁死亡抑制肝纤维化的研究进展[J]. 南京中医药大学学报, 2023, 39(6): 587-593. doi: 10.14148/j.issn.1672-0482.2023.0587
引用本文: 李浩, 吴勉华, 马艳霞, 李文婷, 李沐涵. 中药调控铁死亡抑制肝纤维化的研究进展[J]. 南京中医药大学学报, 2023, 39(6): 587-593. doi: 10.14148/j.issn.1672-0482.2023.0587
LI Hao, WU Mian-hua, MA Yan-xia, LI Wen-ting, LI Mu-han. Research Progress of Traditional Chinese medicine Regulating Ferroptosis to Inhibit Hepatic Fibrosis[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(6): 587-593. doi: 10.14148/j.issn.1672-0482.2023.0587
Citation: LI Hao, WU Mian-hua, MA Yan-xia, LI Wen-ting, LI Mu-han. Research Progress of Traditional Chinese medicine Regulating Ferroptosis to Inhibit Hepatic Fibrosis[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(6): 587-593. doi: 10.14148/j.issn.1672-0482.2023.0587

中药调控铁死亡抑制肝纤维化的研究进展

doi: 10.14148/j.issn.1672-0482.2023.0587
基金项目: 

国家自然科学基金青年科学基金项目 81804058

江苏省中医药科技发展计划项目 QN2020003

第二届全国名中医传承工作室 国中医药办人教函〔2022〕245号

吴勉华全国名老中医药专家传承工作室 国中医药人教函〔2022〕75号

国家中医药管理局第七批全国老中医药专家学术经验继承工作项目 国中医药人教函〔2022〕76号

吴勉华江苏省名老中医药专家传承工作室 苏中医科教〔2021〕7号

国家中医药管理局中医药传承与创新“百千万”人才工程(岐黄工程)岐黄学者项目 国中医药人教函〔2018〕284号

国家级大学生创新创业项目 202110315015

详细信息
    作者简介:

    李浩, 男, E-mail: 2454552997@qq.com

    通讯作者:

    李沐涵, 女, 讲师, 主要从事中医药防治肿瘤的临床及机制研究, E-mail: limuhan1983@163.com

  • 中图分类号: R285.5

Research Progress of Traditional Chinese medicine Regulating Ferroptosis to Inhibit Hepatic Fibrosis

  • 摘要: 铁死亡是一种铁离子依赖性的细胞程序性死亡方式, 与铁代谢、脂质代谢及氨基酸抗氧化系统密切相关。铁死亡在肝纤维化发生发展过程中扮演重要角色, 可能成为预防和治疗肝纤维化的潜在靶向。研究显示, 大量中药成分可通过铁死亡途径抑制肝纤维化。笔者就铁死亡的调控途径、铁死亡在肝纤维化中的作用及治疗策略等方面进行综述, 并总结近五年中药单体及活性成分干预铁死亡治疗肝纤维化相关研究, 以期为中药干预、抗肝纤维化提供新的思路。

     

  • 图  1  铁死亡发生的主要机制

    Figure  1.  The main mechanism of ferroptosis

    表  1  调控铁死亡治疗肝纤维化的相关中药及其有效成分

    Table  1.   Related traditional Chinese medicine and its effective components for regulating ferroptosis in the treatment of liver fibrosis

    中药 活性成分 铁死亡相关指标 调控铁死亡抑制肝纤维化可能机制
    青蒿 双氢青蒿素[34, 37-38] TfR1↓、TGF-β1↓、LD↓ 抑制铁超载, 抑制肝细胞铁死亡; 促进脂质积累, 诱导HSCs铁死亡
    青蒿琥酯[35, 39] p53↑、TfR1↓、Atg↑ 通过p53途径, 诱导HSCs铁死亡; 介导FT自噬, 引起铁超载, 诱导HSCs铁死亡
    蒿甲醚[36, 40-41] SLC2A11↑、p53↑、IRP2↓ 通过BRD7-P53-SLC7A11通路和IRP2-Iron-ROS轴, 诱导HSCs铁死亡
    黄芩 黄芩素[42] SLC2A11↑、p53↑ 通过SOCS11/P53/SLC7A11途径诱导HSCs铁死亡
    黄芩苷[43] miR-3595↑、ACSL4↓ 通过miR-3595/ACSL4轴抑制肝细胞铁死亡
    黄连 小檗碱[44-45] ALP↓、FT↓、DGAT1↓、HSL↑ 通过铁蛋白自噬引起的铁超载, 诱导HSCs铁死亡; 抑制脂质的过度积累, 减少肝细胞铁死亡
    雷公藤 雷公藤红素[46] PRDXs、HO-1↑ 通过与PRDXs结合, 抑制其抗氧化性, 并上调HO-1, 诱导HSCs铁死亡
    前胡 紫花前胡素[47] Fe2+↑、GPX4/GSH↓ 通过增加Fe2+、脂质过氧化物水平诱导HSCs铁死亡
    甘草 异甘草酸镁[48] HO-1↑、Fe2+ 通过HO-1诱导HSCs铁死亡
    异甘草酸[49] ROS↑、TfR↑、DMT1↑、GPX4↓ 通过Cav-1抑制GPX4表达和增加TfR和DMT1的表达引起铁超载, 诱导HSCs铁死亡
    其他 鞣花酸[50] SNARE↓、FPN↓ 通过干扰SNARE复合物的形成来诱导HSCs的FPN依赖性铁死亡
    根皮苷[51] 可能通过铁死亡、碳代谢等途径抑制纤维化
    野苦瓜提取物[52] GPX4↓、SLC7A11↓ 可能通过铁超载与脂质过氧化堆积, 诱导HSCs铁死亡
    下载: 导出CSV
  • [1] AKCORA BO, DATHATHRI E, ORTIZ-PEREZ A, et al. TG101348, a selective JAK2 antagonist, ameliorates hepatic fibrogenesis in vivo[J]. FASEB J, 2019, 33(8): 9466-9475. doi: 10.1096/fj.201900215RR
    [2] GALLUZZI L, VITALE I, AARONSON SA, et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25(3): 486-541. doi: 10.1038/s41418-017-0012-4
    [3] YOU HM, WANG L, BU FT, et al. Ferroptosis: Shedding light on mechanisms and therapeutic opportunities in liver diseases[J]. Cells, 2022, 11(20): 3301. doi: 10.3390/cells11203301
    [4] 徐列明, 刘平, 沈锡中, 等. 肝纤维化中西医结合诊疗指南(2019年版)[J]. 中国中西医结合杂志, 2019, 39(11): 1286-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZXJ201911002.htm

    XU LM, LIU P, SHEN XZ, et al. Diagnosis and treatment guidelines of integrated Chinese and western medicine for treating hepatic fibrosis (2019 Ed)[J]. Chin J Integr Tradit West Med, 2019, 39(11): 1286-1295. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZXJ201911002.htm
    [5] 杨漾, 钟园园, 苏畅, 等. 基于阴阳理论探讨中医药干预铁死亡的研究进展[J]. 中国实验方剂学杂志, 2022, 28(11): 227-237. doi: 10.13422/j.cnki.syfjx.20220504

    YANG Y, ZHONG YY, SU C, et al. Traditional Chinese medicine intervention of ferroptosis based on Yin-Yang theory: A review[J]. Chin J Exp Tradit Med Formulae, 2022, 28(11): 227-237. doi: 10.13422/j.cnki.syfjx.20220504
    [6] 肖准, 杨芳明, 代静慧, 等. 基于"取象比类"法探讨肝细胞铁代谢紊乱与肝纤维化中医病机的关联[J]. 世界科学技术-中医药现代化, 2022, 24(3): 1090-1096. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX202203023.htm

    XIAO Z, YANG FM, DAI JH, et al. Exploring the relationship between hepatocyte iron metabolism disorder and hepatic fibrosis in traditional Chinese medicine based on the method of analogism[J]. Mod Tradit Chin Med Mater Med World Sci Technol, 2022, 24(3): 1090-1096. https://www.cnki.com.cn/Article/CJFDTOTAL-SJKX202203023.htm
    [7] PLAYS M, MULLER S, RODRIGUEZ R. Chemistry and biology of ferritin[J]. Metallomics, 2021, 13(5): 1-10.
    [8] DONG H, QIANG ZZ, CHAI DD, et al. Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1[J]. Aging, 2020, 12(13): 12943-12959. doi: 10.18632/aging.103378
    [9] ZHU T, XIAO ZY, YUAN HY, et al. ACO1 and IREB2 downregulation confer poor prognosis and correlate with autophagy-related ferroptosis and immune infiltration in KIRC[J]. Front Oncol, 2022, 12: 929838. doi: 10.3389/fonc.2022.929838
    [10] ZHAO TT, GUO XJ, SUN Y. Iron accumulation and lipid peroxidation in the aging retina: Implication of ferroptosis in age-related macular degeneration[J]. Aging Dis, 2021, 12(2): 529-551. doi: 10.14336/AD.2020.0912
    [11] ZHOU JA, TAN YZ, HU LL, et al. Inhibition of HSPA8 by rifampicin contributes to ferroptosis via enhancing autophagy[J]. Liver Int, 2022, 42(12): 2889-2899. doi: 10.1111/liv.15459
    [12] BRUNI A, PEPPER AR, PAWLICK RL, et al. Ferroptosis-inducing agents compromise in vitro human islet viability and function[J]. Cell Death Dis, 2018, 9(6): 595. doi: 10.1038/s41419-018-0506-0
    [13] URSINI F, MAIORINO M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4[J]. Free Radic Biol Med, 2020, 152: 175-185. doi: 10.1016/j.freeradbiomed.2020.02.027
    [14] LI DY, WANG T, LAI JJ, et al. Silencing TRPM2 enhanced erastin- and RSL3-induced ferroptosis in gastric cancer cells through destabilizing HIF-1α and Nrf2 proteins[J]. Cytotechnology, 2022, 74(5): 559-577. doi: 10.1007/s10616-022-00545-z
    [15] TARANGELO A, MAGTANONG L, BIEGING-ROLETT KT, et al. p53 suppresses metabolic stress-induced ferroptosis in cancer cells[J]. Cell Rep, 2018, 22(3): 569-575. doi: 10.1016/j.celrep.2017.12.077
    [16] HU CL, NYDES M, SHANLEY KL, et al. Reduced expression of the ferroptosis inhibitor glutathione peroxidase-4 in multiple sclerosis and experimental autoimmune encephalomyelitis[J]. J Neurochem, 2019, 148(3): 426-439. doi: 10.1111/jnc.14604
    [17] YAN WC, WANG DX, WAN N, et al. Living cell-target responsive accessibility profiling reveals silibinin targeting ACSL4 for combating ferroptosis[J]. Anal Chem, 2022, 94(43): 14820-14826. doi: 10.1021/acs.analchem.2c03515
    [18] MA TY, DU JT, ZHANG YF, et al. GPX4-independent ferroptosis: A new strategy in disease's therapy[J]. Cell Death Discov, 2022, 8(1): 434. doi: 10.1038/s41420-022-01212-0
    [19] GAUTHERON J, GORES GJ, RODRIGUES CMP. Lytic cell death in metabolic liver disease[J]. J Hepatol, 2020, 73(2): 394-408. doi: 10.1016/j.jhep.2020.04.001
    [20] YU YY, JIANG L, WANG H, et al. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis[J]. Blood, 2020, 136(6): 726-739. doi: 10.1182/blood.2019002907
    [21] TSURUSAKI S, TSUCHIYA Y, KOUMURA T, et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis[J]. Cell Death Dis, 2019, 10(6): 449. doi: 10.1038/s41419-019-1678-y
    [22] ZHANG ZL, GUO M, LI YJ, et al. RNA-binding protein ZFP36/TTP protects against ferroptosis by regulating autophagy signaling pathway in hepatic stellate cells[J]. Autophagy, 2020, 16(8): 1482-1505. doi: 10.1080/15548627.2019.1687985
    [23] 王诗洋, 王枭, 徐祖清, 等. 苦杏仁苷通过抑制氧化应激及炎症反应减轻四氯化碳诱导的大鼠肝纤维化作用[J]. 现代免疫学, 2020, 40(6): 471-475, 481. https://www.cnki.com.cn/Article/CJFDTOTAL-SHMY202006006.htm

    WANG SY, WANG X, XU ZQ, et al. Amygdalin alleviates carbon tetrachloride induced hepatic fibrosis in rats by inhibiting oxidative stress and inflammatory response[J]. Curr Immunol, 2020, 40(6): 471-475, 481. https://www.cnki.com.cn/Article/CJFDTOTAL-SHMY202006006.htm
    [24] LI XY, WANG TX, HUANG XM, et al. Targeting ferroptosis alleviates methionine-choline deficient (MCD)-diet induced NASH by suppressing liver lipotoxicity[J]. Liver Int, 2020, 40(6): 1378-1394. doi: 10.1111/liv.14428
    [25] 王振华, 王鹏. 黄芩苷胶囊联合异甘草酸镁对慢性乙型肝炎患者炎性反应及肝纤维化程度的影响[J]. 临床医学工程, 2021, 28(7): 939-940. https://www.cnki.com.cn/Article/CJFDTOTAL-YBQJ202107044.htm

    WANG ZH, WANG P. Influence of baicalin capsules combined with magnesium isoglycyrrhizinate on inflammatory reactions and liver fibrosis degree in patients with chronic hepatitis B[J]. Clin Med Eng, 2021, 28(7): 939-940. https://www.cnki.com.cn/Article/CJFDTOTAL-YBQJ202107044.htm
    [26] 赵杰, 齐永芬, 鱼艳荣. 氧化应激在肝纤维化发生发展中的作用[J]. 临床肝胆病杂志, 2019, 35(9): 2067-2071. https://www.cnki.com.cn/Article/CJFDTOTAL-LCGD201909050.htm

    ZHAO J, QI YF, YU YR. Research advances in the role of oxidative stress in the development and progression of liver fibrosis[J]. J Clin Hepatol, 2019, 35(9): 2067-2071. https://www.cnki.com.cn/Article/CJFDTOTAL-LCGD201909050.htm
    [27] CHU J, LIU CX, SONG R, et al. Ferrostatin-1 protects HT-22 cells from oxidative toxicity[J]. Neural Regen Res, 2020, 15(3): 528-536. doi: 10.4103/1673-5374.266060
    [28] ANANDHAN A, DODSON M, SCHMIDLIN CJ, et al. Breakdown of an ironclad defense system: The critical role of NRF2 in mediating ferroptosis[J]. Cell Chem Biol, 2020, 27(4): 436-447. doi: 10.1016/j.chembiol.2020.03.011
    [29] 付佳琪, 于栋华, 陈平平, 等. 铁死亡在心血管疾病中的作用及中药干预研究进展[J]. 中药药理与临床, 2023, 39(2): 93-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYL202302020.htm

    FU JQ, YU DH, CHEN PP, et al. Research progress on the role of iron death in cardiovascular diseases and intervention of traditional Chinese medicine[J]. Pharmacol Clin Chin Mater Med, 2023, 39(2): 93-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYYL202302020.htm
    [30] 刘浩, 徐寒莹, 石众, 等. 铁死亡与中枢神经系统疾病的关联概述及中医药干预进展[J]. 中国实验方剂学杂志, 2023, 29(5): 246-256. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202305029.htm

    LIU H, XU HY, SHI Z, et al. Association between ferroptosis and central nervous system diseases and A review of traditional Chinese medicine intervention[J]. Chin J Exp Tradit Med Formulae, 2023, 29(5): 246-256. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202305029.htm
    [31] 周浩然, 杨洁, 庄欣. 铁死亡在中医药治疗心力衰竭中的机制研究进展[J/OL]. 中国实验方剂学杂志: 1-7. DOI: 10.13422/j.cnki.syfjx.202202029.

    ZHOU HR, YANG J, ZHUANG X. Research progress on the mechanism of iron death in the treatment of heart failure by traditional Chinese medicine[J/OL]. Chin J Exp Tradit Med Formulae: 1-7. DOI: 10.13422/j.cnki.syfjx.202202029.
    [32] 朱利, 吴鸿飞. 铁死亡在动脉粥样硬化中的作用及中医药干预研究进展[J]. 中国实验方剂学杂志, 2023, 29(2): 244-252. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202302031.htm

    ZHU L, WU HF. Effect of ferroptosis on atherosclerosis and Chinese medicine intervention: A review[J]. Chin J Exp Tradit Med Formulae, 2023, 29(2): 244-252. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202302031.htm
    [33] 张启立, 赵磊, 夏鹏飞, 等. 基于铁死亡理论的中医药防治肿瘤研究进展[J]. 中国实验方剂学杂志, 2021, 27(22): 222-231. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202122032.htm

    ZHANG QL, ZHAO L, XIA PF, et al. Chinese medicine prevention and treatment of tumor based on ferroptosis: A review[J]. Chin J Exp Tradit Med Formulae, 2021, 27(22): 222-231. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202122032.htm
    [34] 江远, 张玲, 何金洋. 双氢青蒿素对不同铁负载条件下肝星状细胞活化的影响[J]. 中医杂志, 2017, 58(10): 873-877. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ201710016.htm

    JIANG Y, ZHANG L, HE JY. Impact of dihydroartemisinin on hepatic stellate cell activation under different iron loading conditions[J]. J Tradit Chin Med, 2017, 58(10): 873-877. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ201710016.htm
    [35] 王桭屹, 王娴, 章之悦, 等. 青蒿琥酯通过铁死亡途径抑制肝星状细胞活化的作用机制[J]. 中华中医药杂志, 2022, 37(1): 455-460. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202201093.htm

    WANG ZY, WANG X, ZHANG ZY, et al. Mechanism of artesunate in inhibiting hepatic stellate cell activation via ferroptosis[J]. China J Tradit Chin Med Pharm, 2022, 37(1): 455-460. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202201093.htm
    [36] 王玲. 基于铁死亡通路探讨蒿甲醚抗肝纤维化作用及其分子机制[D]. 南京: 南京中医药大学, 2019.

    WANG L. Studies on the anti-hepatic fibrosis effect and mechanism of artemether based on ferroptosis signaling pathway[D]. Nanjing: Nanjing University of Chinese Medicine, 2019.
    [37] XIA SW, WANG ZM, CHEN L, et al. Dihydroartemisinin regulates lipid droplet metabolism in hepatic stellate cells by inhibiting lncRNA-H19-induced AMPK signal[J]. Biochem Pharmacol, 2021, 192: 114730. doi: 10.1016/j.bcp.2021.114730
    [38] ZHANG ZL, WANG XA, WANG ZL, et al. Dihydroartemisinin alleviates hepatic fibrosis through inducing ferroptosis in hepatic stellate cells[J]. BioFactors, 2021, 47(5): 801-818. doi: 10.1002/biof.1764
    [39] KONG ZY, LIU R, CHENG YR. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway[J]. Biomedecine Pharmacother, 2019, 109: 2043-2053.
    [40] WANG L, ZHANG ZL, LI MM, et al. P53-dependent induction of ferroptosis is required for artemether to alleviate carbon tetrachloride-induced liver fibrosis and hepatic stellate cell activation[J]. IUBMB Life, 2019, 71(1): 45-56.
    [41] LI YJ, JIN C, SHEN M, et al. Iron regulatory protein 2 is required for artemether-mediated anti-hepatic fibrosis through ferroptosis pathway[J]. Free Radic Biol Med, 2020, 160: 845-859.
    [42] DU XS, LI HD, YANG XJ, et al. Wogonin attenuates liver fibrosis via regulating hepatic stellate cell activation and apoptosis[J]. Int Immunopharmacol, 2019, 75: 105671.
    [43] WU XJ, ZHI FC, LUN WJ, et al. Baicalin inhibits PDGF-BB-induced hepatic stellate cell proliferation, apoptosis, invasion, migration and activation via the miR-3595/ACSL4 axis[J]. Int J Mol Med, 2018, 41(4): 1992-2002.
    [44] YI JZ, WU SY, TAN SW, et al. Berberine alleviates liver fibrosis through inducing ferrous redox to activate ROS-mediated hepatic stellate cells ferroptosis[J]. Cell Death Discov, 2021, 7(1): 374.
    [45] 向锁玉, 张丽超, 胡云逸, 等. 小檗碱通过调节脂质代谢发挥抗肝纤维化作用[J]. 热带医学杂志, 2022, 22(4): 457-463, 440. https://www.cnki.com.cn/Article/CJFDTOTAL-RDYZ202204003.htm

    XIANG SY, ZHANG LC, HU YY, et al. Berberine plays an anti-fibrosis role by regulating lipid metabolism[J]. J Trop Med, 2022, 22(4): 457-463, 440. https://www.cnki.com.cn/Article/CJFDTOTAL-RDYZ202204003.htm
    [46] LUO P, LIU DD, ZHANG Q, et al. Celastrol induces ferroptosis in activated HSCs to ameliorate hepatic fibrosis via targeting peroxiredoxins and HO-1[J]. Acta Pharm Sin B, 2022, 12(5): 2300-2314.
    [47] QUE RY, CAO MX, DAI YC, et al. Decursin ameliorates carbon-tetrachloride-induced liver fibrosis by facilitating ferroptosis of hepatic stellate cells[J]. Biochem Cell Biol, 2022, 100(5): 378-386.
    [48] SUI M, JIANG XF, CHEN J, et al. Magnesium isoglycyrrhizinate ameliorates liver fibrosis and hepatic stellate cell activation by regulating ferroptosis signaling pathway[J]. Biomed Pharmacother, 2018, 106: 125-133.
    [49] HUANG S, WANG YH, XIE SW, et al. Isoliquiritigenin alleviates liver fibrosis through caveolin-1-mediated hepatic stellate cells ferroptosis in zebrafish and mice[J]. Phytomedicine, 2022, 101: 154117.
    [50] LI LH, WANG KP, JIA RJ, et al. Ferroportin-dependent ferroptosis induced by ellagic acid retards liver fibrosis by impairing the SNARE complexes formation[J]. Redox Biol, 2022, 56: 102435.
    [51] SHI YH, YAN T, LU X, et al. Phloridzin reveals new treatment strategies for liver fibrosis[J]. Pharmaceuticals, 2022, 15(7): 896.
    [52] HO CH, HUANG JH, SUN MS, et al. Wild bitter melon extract regulates LPS-induced hepatic stellate cell activation, inflammation, endoplasmic reticulum stress, and ferroptosis[J]. Evid Based Complement Alternat Med, 2021, 2021: 6671129.
    [53] 周相宇, 周素芳, 李玉茹, 等. 基于Nrf2信号通路探究参苓白术散调节铁死亡对酒精性肝损伤大鼠的影响[J]. 中国实验方剂学杂志, 2023, 29(5): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202305012.htm

    ZHOU XY, ZHOU SF, LI YR, et al. Effect of Shenling Baizhusan on alcoholic liver injury in rats by regulating ferroptosis based on Nrf2 signaling pathway[J]. Chin J Exp Tradit Med Formulae, 2023, 29(5): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202305012.htm
    [54] 叶苗青, 薛敬东, 李粉萍, 等. 化脂复肝颗粒对非酒精性脂肪肝TLR4/NF-κB通路及脂肪铁死亡的调控及机制研究[J]. 现代中西医结合杂志, 2021, 30(30): 3307-3312. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJH202130002.htm

    YE MQ, XUE JD, LI FP, et al. Study on regulation and mechanism of Huazhi Fugan Granules on TLR4/NF-κB pathway and fatty iron death in non-alcoholic fatty liver[J]. Mod J Integr Tradit Chin West Med, 2021, 30(30): 3307-3312. https://www.cnki.com.cn/Article/CJFDTOTAL-XDJH202130002.htm
    [55] 李二稳, 高改, 王梦瑶, 等. 泽泻汤抑制肝细胞铁死亡改善非酒精性脂肪性肝病的作用机制[J]. 中医学报, 2022, 37(6): 1243-1253. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZK202206024.htm

    LI EW, GAO G, WANG MY, et al. Mechanism of Zexie Tang in inhibiting ferroptosis of hepatocytes to relieve non-alcoholic fatty liver disease[J]. Acta Chin Med, 2022, 37(6): 1243-1253. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZK202206024.htm
    [56] 韩志强, 巴图德力根, 薛兰, 等. 蒙药德都红花-7味散对大鼠慢性肝损伤保护机制[J]. 中国临床药理学杂志, 2022, 38(21): 2596-2599. https://www.cnki.com.cn/Article/CJFDTOTAL-GLYZ202221017.htm

    HAN ZQ, BA T, XUE L, et al. Protective mechanism of Mongolian medicine Deduhonghua-7 powder on rats with chronic liver injury[J]. Chin J Clin Pharmacol, 2022, 38(21): 2596-2599. https://www.cnki.com.cn/Article/CJFDTOTAL-GLYZ202221017.htm
    [57] 何银, 刘春雨, 何迟迟, 等. 扶正养肝合剂对药物性肝损伤的保护作用研究[J]. 中国中药杂志, 2018, 43(23): 4685-4691. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201823024.htm

    HE Y, LIU CY, HE CC, et al. Protective effect of Fuzheng Yanggan Mixture on drug-induced liver injury[J]. China J Chin Mater Med, 2018, 43(23): 4685-4691. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201823024.htm
  • 加载中
图(1) / 表(1)
计量
  • 文章访问数:  551
  • HTML全文浏览量:  107
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-11
  • 网络出版日期:  2023-06-12
  • 发布日期:  2023-06-10

目录

    /

    返回文章
    返回