留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

益肾泻浊方抑制裸角质层同源物2活性干预慢性肾衰竭的机制研究

顾鸣佳 高磊平 魏晴雪 朱莺 包能 张航 朱介宾

顾鸣佳, 高磊平, 魏晴雪, 朱莺, 包能, 张航, 朱介宾. 益肾泻浊方抑制裸角质层同源物2活性干预慢性肾衰竭的机制研究[J]. 南京中医药大学学报, 2023, 39(5): 483-489. doi: 10.14148/j.issn.1672-0482.2023.0483
引用本文: 顾鸣佳, 高磊平, 魏晴雪, 朱莺, 包能, 张航, 朱介宾. 益肾泻浊方抑制裸角质层同源物2活性干预慢性肾衰竭的机制研究[J]. 南京中医药大学学报, 2023, 39(5): 483-489. doi: 10.14148/j.issn.1672-0482.2023.0483
GU Ming-jia, GAO Lei-ping, WEI Qing-xue, ZHU Ying, BAO Neng, ZHANG Hang, ZHU Jie-bin. Mechanism of Yishen Xiezhuo Decoction in Treatment of Chronic Renal Failure by Inhibiting NKD2 Activity[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(5): 483-489. doi: 10.14148/j.issn.1672-0482.2023.0483
Citation: GU Ming-jia, GAO Lei-ping, WEI Qing-xue, ZHU Ying, BAO Neng, ZHANG Hang, ZHU Jie-bin. Mechanism of Yishen Xiezhuo Decoction in Treatment of Chronic Renal Failure by Inhibiting NKD2 Activity[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(5): 483-489. doi: 10.14148/j.issn.1672-0482.2023.0483

益肾泻浊方抑制裸角质层同源物2活性干预慢性肾衰竭的机制研究

doi: 10.14148/j.issn.1672-0482.2023.0483
基金项目: 

南京中医药大学自然科学基金项目 XZR2020063

苏州市科技发展(医疗卫生科技创新)项目 SKJY2021006

苏州市“科教兴卫”青年科技项目 KJXW2021070

详细信息
    作者简介:

    顾鸣佳, 男, 副主任中医师, E-mail: fsyy00893@njucm.edu.cn

    通讯作者:

    朱介宾, 男,主任中医师, 主要从事医派和杂病研究,E-mail: fsyy00892@njucm.edu.cn

  • 中图分类号: R285.5

Mechanism of Yishen Xiezhuo Decoction in Treatment of Chronic Renal Failure by Inhibiting NKD2 Activity

  • 摘要:   目的  通过建立慢性肾衰竭(CRF)小鼠模型, 以裸角质层同源物2(NKD2)为切入点, 观察益肾泻浊方对CRF小鼠各项肾功能指标的改善作用, 并初步探讨其作用机制。  方法  采用单侧输尿管梗阻法(UUO)构建小鼠CRF模型, 末次给药结束后处死小鼠, 观察测量小鼠肾脏形态和质量, HE和Masson染色观察肾脏病理情况, 使用肾小管损伤评分和肾纤维化区域量化指标评估肾衰竭程度。运用ELISA法测定血清中IL-1β、IL-6和TNF-α的水平, 试剂盒检测BUN和SCr水平。Western blot检测小鼠肾脏Collagen α1、FN1、α-SMA及NKD2蛋白含量。  结果  与正常组相比, 模型组小鼠肾脏组织出现水肿、颜色变浅、体积增大; 肾脏质量指数显著增加(P < 0.01), 肾小管损伤评分升高(P < 0.01), 肾纤维化水平和Collagen α1免疫组化表达量显著增加(P < 0.01);血清BUN、SCr、IL-6、IL-1β以及TNF-α水平均明显升高(P < 0.01);肾脏Collagen α1、FN1、α-SMA及NKD2蛋白表达量均增加(P < 0.01)。与模型组相比, 低剂量复方组小鼠肾小管损伤评分差异无统计学意义, 而肾脏质量指数(P < 0.01)、肾纤维化水平(P < 0.05)和Collagen α1免疫组化表达量(P < 0.05)均显著下降; 血清BUN、SCr、IL-6、IL-1β以及TNF-α水平均明显下降(P < 0.01), 肾脏Collagen α1、FN1、α-SMA及NKD2蛋白表达量显著减少(P < 0.01)。与模型组相比, 高剂量复方组小鼠肾脏质量指数、肾小管损伤评分和肾纤维化水平均明显减少(P < 0.01);血清BUN、SCr、IL-6、IL-1β以及TNF-α水平和肾脏Collagen α1、FN1、α-SMA及NKD2蛋白表达量均显著降低(P < 0.01)。  结论  益肾泻浊方能够下调NKD2表达, 减少肾脏ECM沉积, 抑制炎症反应, 从而延缓CRF进展。

     

  • 图  1  各组小鼠肾脏形态和质量变化

    注: 与Sham组相比, ##P < 0.01;与UUO组相比, **P < 0.01。x±s, n=9。

    Figure  1.  Changes in kidney morphology and weight of mice in each group

    图  2  各组小鼠肾脏病理情况

    Figure  2.  Renal pathology of mice in each group

    图  3  各组小鼠肾小管损伤评分、肾纤维化区域及Collagen α1表达量比较

    注: 与Sham组相比, ##P < 0.01;与UUO组相比, *P < 0.05, **P < 0.01。x±s, n=9。

    Figure  3.  Comparison of renal tubule injury score, renal fibrosis area, and Collagen α1 expression in mice of each group

    图  4  各组小鼠BUN和SCr水平比较

    注: 与Sham组相比, ##P < 0.01;与UUO组相比, **P < 0.01。x±s, n=9。

    Figure  4.  Comparison of BUN and Scr levels of mice in each group

    图  5  各组小鼠血清IL-6、IL-1β和TNF-α水平比较

    注: 与Sham组相比, ##P < 0.01;与UUO组相比, **P < 0.01。x±s, n=9。

    Figure  5.  Comparison of IL-6, IL-1β and TNF-α levels of mice in each group

    图  6  各组小鼠肾脏Collagen α1、FN1、α-SMA及NKD2蛋白表达量比较

    注: 与Sham组相比, ##P < 0.01;与UUO组相比, **P < 0.01。x±s, n=9。

    Figure  6.  Comparison of renal Collagen α1, FN1, α-SMA and NKD2 protein expression in mice of each group

    图  7  各组小鼠肾脏Collagen α1和NKD2免疫荧光结果比较

    注:与Sham组相比,##P < 0.01;与UUO组相比,**P < 0.01。x±s, n=9。

    Figure  7.  Comparison of renal Collagen α1 and NKD2 immunofluorescence results

  • [1] ZHANG L, WANG F, WANG L, et al. Prevalence of chronic kidney disease in China: A cross-sectional survey[J]. Lancet, 2012, 379(9818): 815-822. doi: 10.1016/S0140-6736(12)60033-6
    [2] HARRIS RC, NEILSON EG. Toward a unified theory of renal progression[J]. Annu Rev Med, 2006, 57: 365-380. doi: 10.1146/annurev.med.57.121304.131342
    [3] ZEISBERG M, STRUTZ F, MÜLLER GA. Renal fibrosis: An update[J]. Curr Opin Nephrol Hypertens, 2001, 10(3): 315-320. doi: 10.1097/00041552-200105000-00004
    [4] 齐振强, 任鲁颖, 冯国庆, 等. 慢性肾功能衰竭中医临床研究进展[J]. 中华中医药学刊, 2016, 34(8): 2006-2009. doi: 10.13193/j.issn.1673-7717.2016.08.062

    QI ZQ, REN LY, FENG GQ, et al. Research advances on traditional Chinese medicine clinical treatment for chronic renal failure[J]. Chin Arch Tradit Chin Med, 2016, 34(8): 2006-2009. doi: 10.13193/j.issn.1673-7717.2016.08.062
    [5] 王钢, 邹燕勤, 周恩超. 邹云翔实用中医肾病学[M]. 北京: 中国中医药出版社, 2013.

    WANG G, ZOU YQ, ZHOU EC. Zou Yunxiang Practical Nephrology of Traditional Chinese Medicine[M]. Beijing: Chinese medicine press, 2013.
    [6] CHEN JW, HU YB, MOU X, et al. Amygdalin alleviates renal injury by suppressing inflammation, oxidative stress and fibrosis in streptozotocin-induced diabetic rats[J]. Life Sci, 2021, 265: 118835. doi: 10.1016/j.lfs.2020.118835
    [7] WU XH, LI H, WAN ZJ, et al. The combination of ursolic acid and empagliflozin relieves diabetic nephropathy by reducing inflammation, oxidative stress and renal fibrosis[J]. Biomed Pharmacother, 2021, 144: 112267. doi: 10.1016/j.biopha.2021.112267
    [8] MENG XM, NIKOLIC-PATERSON DJ, LAN HY. TGF-β: The master regulator of fibrosis[J]. Nat Rev Nephrol, 2016, 12(6): 325-338. doi: 10.1038/nrneph.2016.48
    [9] ROUSSET R, MACK JA, WHARTON KJ, et al. Naked cuticle targets dishevelled to antagonize Wnt signal transduction[J]. Genes Dev, 2001, 15(6): 658-671. doi: 10.1101/gad.869201
    [10] ZHAO S, KURENBEKOVA L, GAO Y, et al. NKD2, a negative regulator of Wnt signaling, suppresses tumor growth and metastasis in osteosarcoma[J]. Oncogene, 2015, 34(39): 5069-5079. doi: 10.1038/onc.2014.429
    [11] KUPPE C, IBRAHIM MM, KRANZ J, et al. Decoding myofibroblast origins in human kidney fibrosis[J]. Nature, 2021, 589(7841): 281-286. doi: 10.1038/s41586-020-2941-1
    [12] CHEN DQ, CAO G, CHEN H, et al. Identification of serum metabolites associating with chronic kidney disease progression and anti-fibrotic effect of 5-methoxytryptophan[J]. Nat Commun, 2019, 10(1): 1476. doi: 10.1038/s41467-019-09329-0
    [13] SONG J, XIA YY, YAN X, et al. Losartan accelerates the repair process of renal fibrosis in UUO mouse after the surgical recanalization by upregulating the expression of Tregs[J]. Int Urol Nephrol, 2019, 51(11): 2073-2081. doi: 10.1007/s11255-019-02253-8
    [14] YANG K, LI W, BAI T, et al. Mindin deficiency alleviates renal fibrosis through inhibiting NF-κB and TGF-β/Smad pathways[J]. J Cell Mol Med, 2020, 24(10): 5740-5750. doi: 10.1111/jcmm.15236
    [15] PAN Z, YANG K, WANG HB, et al. MFAP4 deficiency alleviates renal fibrosis through inhibition of NF-κB and TGF-β/Smad signaling pathways[J]. FASEB J, 2020, 34(11): 14250-14263. doi: 10.1096/fj.202001026R
    [16] LI HP, FENG YB, SUN WX, et al. Antioxidation, anti-inflammation and anti-fibrosis effect of phosphorylated polysaccharides from Pleurotus djamor mycelia on adenine-induced chronic renal failure mice[J]. Int J Biol Macromol, 2021, 170: 652-663. doi: 10.1016/j.ijbiomac.2020.12.159
    [17] LEMOS DR, MCMURDO M, KARACA G, et al. Interleukin-1β activates a MYC-dependent metabolic switch in kidney stromal cells necessary for progressive tubulointerstitial fibrosis[J]. J Am Soc Nephrol, 2018, 29(6): 1690-1705. doi: 10.1681/ASN.2017121283
    [18] MERAN S, STEADMAN R. Fibroblasts and myofibroblasts in renal fibrosis[J]. Int J Exp Pathol, 2011, 92(3): 158-167. doi: 10.1111/j.1365-2613.2011.00764.x
    [19] YUAN Q, TAN RJ, LIU YH. Myofibroblast in kidney fibrosis: Origin, activation, and regulation[J]. Adv Exp Med Biol, 2019, 1165: 253-283.
    [20] MOERMAN T, AIBAR SANTOS S, BRAVO GONZALEZ-BLAS C, et al. GRNBoost2 and Arboreto: Efficient and scalable inference of gene regulatory networks[J]. Bioinformatics, 2019, 35(12): 2159-2161. doi: 10.1093/bioinformatics/bty916
  • 加载中
图(7)
计量
  • 文章访问数:  164
  • HTML全文浏览量:  21
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-11
  • 网络出版日期:  2023-05-19
  • 发布日期:  2023-05-10

目录

    /

    返回文章
    返回