留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

4种常见清热燥湿类中药对肠道菌群及粪便胆汁酸和短链脂肪酸代谢的影响

李心如 盛先杰 杨琰 安振涛 康安 李慧 葛飞

李心如, 盛先杰, 杨琰, 安振涛, 康安, 李慧, 葛飞. 4种常见清热燥湿类中药对肠道菌群及粪便胆汁酸和短链脂肪酸代谢的影响[J]. 南京中医药大学学报, 2023, 39(5): 442-451. doi: 10.14148/j.issn.1672-0482.2023.0442
引用本文: 李心如, 盛先杰, 杨琰, 安振涛, 康安, 李慧, 葛飞. 4种常见清热燥湿类中药对肠道菌群及粪便胆汁酸和短链脂肪酸代谢的影响[J]. 南京中医药大学学报, 2023, 39(5): 442-451. doi: 10.14148/j.issn.1672-0482.2023.0442
LI Xin-ru, SHENG Xian-jie, YANG Yan, AN Zhen-tao, KANG An, LI Hui, GE Fei. Effects of Four Commonly Used Chinese Medicines with Clearing Heat and Drying Dampness on Intestinal Flora Mediated Bile Acids and Short Chain Fatty Acids Metabolism[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(5): 442-451. doi: 10.14148/j.issn.1672-0482.2023.0442
Citation: LI Xin-ru, SHENG Xian-jie, YANG Yan, AN Zhen-tao, KANG An, LI Hui, GE Fei. Effects of Four Commonly Used Chinese Medicines with Clearing Heat and Drying Dampness on Intestinal Flora Mediated Bile Acids and Short Chain Fatty Acids Metabolism[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(5): 442-451. doi: 10.14148/j.issn.1672-0482.2023.0442

4种常见清热燥湿类中药对肠道菌群及粪便胆汁酸和短链脂肪酸代谢的影响

doi: 10.14148/j.issn.1672-0482.2023.0442
基金项目: 

江苏省卫健委科研课题面上项目 M2022024

江苏省重点研发计划社会发展项目 BE2022817

南通市卫生健康委员会科研课题 MS2022102

详细信息
    作者简介:

    李心如, 女, 硕士研究生, E-mail: 20210803@njucm.edu.cn

    通讯作者:

    葛飞, 男, 主任医师, 主要从事脾胃病的中医药防治研究, E-mail: ha9099@163.com

    李慧, 女, 副主任医师, 主要从事脾胃病的中医药防治研究, E-mail: jessica20110215@163.com

  • 中图分类号: R285.5

Effects of Four Commonly Used Chinese Medicines with Clearing Heat and Drying Dampness on Intestinal Flora Mediated Bile Acids and Short Chain Fatty Acids Metabolism

  • 摘要:   目的  探究在长期临床等效剂量下4种清热燥湿类中药对正常小鼠肠道菌群、胆汁酸及短链脂肪酸的影响。  方法  30只Balb/c雄性小鼠被随机分为对照组、苦参组、黄连组、黄柏组和黄芩组, 每组各6只。除对照组外, 苦参组、黄柏组、黄连组和黄芩组给药剂量分别为2.34、3.12、1.3 g·kg-1和2.6 g·kg-1, 连续灌胃2周, 采用液相色谱-串联质谱法检测粪便中短链脂肪酸和胆汁酸含量, 利用16S rRNA高通量基因测序技术分析肠道内容物中菌群结构变化。  结果  清热燥湿类中药对正常小鼠粪便中6种短链脂肪酸无明显影响。在常见的23种胆汁酸中, 与正常组相比, 黄芩组、苦参组、黄连组和黄柏组分别有4、3、2、1种胆汁酸显著变化。从肠道菌群丰度变化上看, 与对照组相比, 除苦参组外, 黄连组、黄芩组和黄柏组小鼠厚壁菌门均呈现下降趋势, 拟杆菌门均呈现上升趋势, 其中黄连组变化更显著。  结论  苦参、黄柏、黄连和黄芩对正常小鼠长期药效剂量下短链脂肪酸影响较小, 但可以通过改变肠道菌群结构影响胆汁酸含量的变化。

     

  • 图  1  黄连、黄芩、黄柏和苦参组小鼠短链脂肪酸含量图

    Figure  1.  Content of short-chain fatty acids in mice of HL, HQ, HB and KS groups

    图  2  黄连、黄芩、黄柏和苦参组小鼠胆汁酸PCA图(A)和热图(B)

    Figure  2.  PCA (A) and Heatmap (B) of bile acids in mice of HL, HQ, HB and KS groups

    图  3  黄连、黄芩、黄柏和苦参组小鼠粪便中差异胆汁酸含量图

    注:*P < 0.05, **P < 0.01。

    Figure  3.  Bile acid content differences in feces of mice in HL, HQ, HB and KS groups

    图  4  黄连、黄芩、黄柏和苦参组小鼠肠道菌群PCA(A)和PCoA(B)图

    Figure  4.  PCA (A) and PCoA (B) of intestinal flora of mice in HL, HQ, HB and KS groups

    图  5  黄连、黄芩、黄柏和苦参组小鼠物种组成与差异分析图

    注:A.门水平物种组成图; B.属水平物种组成图; C~F.黄连、黄芩、黄柏和苦参组属水平物种差异图。*P < 0.05, **P < 0.01。

    Figure  5.  Species composition and difference analysis of mice in HL, HQ, HB and KS groups

    图  6  黄连、黄芩、黄柏和苦参组小鼠属水平肠道菌群与短链脂肪酸(A)和胆汁酸(B)相关性热图

    注:*P < 0.05, **P < 0.01, ***P < 0.001。

    Figure  6.  Heatmap of correlation between intestinal flora at genus level and short-chain fatty acids (A) or bile acids (B)

    表  1  胆汁酸及内标的LC-MS/MS参数

    Table  1.   LC-MS/MS parameters for bile acids and internal standard

    ID Q1 Q3 DP/V CE/eV CXP
    LCA 375.300 375.300 -210.000 -10.000 -10.000
    DCA、HDCA、UDCA、CDCA 391.300 391.300 -230.000 -10.000 -10.000
    Dehydro-CA 401.200 401.200 -200.000 -10.000 -10.000
    CA、α-MCA、β-MCA、ω-MAC 407.200 407.200 -245.000 -10.000 -10.000
    GUDCA、GCDCA、GDCA、HDCA 448.200 74.000 -210.000 -83.000 -9.000
    GCA 464.200 74.000 -170.000 -88.000 -11.000
    TDCA、THDCA、TUDCA、TCDCA 498.200 80.000 -280.000 -130.000 -9.000
    TCA、T-α-MCA 514.200 80.000 -205.000 -130.000 -9.000
    CDCA-d4 395.200 359.200 -210.000 -10.000 -10.000
    GCA-d4 468.200 74.000 -170.000 -88.000 -11.000
    下载: 导出CSV

    表  2  黄连、黄芩、黄柏和苦参组小鼠肠道菌群α多样性指数比较(x±s)

    Table  2.   Comparison of intestinal flora α diversity indices of mice in HL, HQ, HB and KS groups(x±s)

    组别 ACE Chao Shannon Simpson
    C 401.18±80.85 405.41±86.75 3.67±0.49 0.07±0.05
    HB 353.61±18.4 360.17±15.31 3.52±0.32 0.08±0.04
    HL 255.31±28.56**** 257.02±27.55**** 2.9±0.38** 0.13±0.05
    HQ 376.42±54.55 379.69±53.43 3.81±0.23 0.04±0.01
    KS 455.58±26.99 470.4±30.29 3.73±0.49 0.08±0.05
    注: 与C组比较,**P < 0.01, ****P < 0.000 1。
    下载: 导出CSV
  • [1] ADAK A, KHAN MR. An insight into gut microbiota and its functionalities[J]. Cell Mol Life Sci, 2019, 76(3): 473-493. doi: 10.1007/s00018-018-2943-4
    [2] SINGH RK, CHANG HW, YAN D, et al. Influence of diet on the gut microbiome and implications for human health[J]. J Transl Med, 2017, 15(1): 73. doi: 10.1186/s12967-017-1175-y
    [3] SCHOELER M, CAESAR R. Dietary lipids, gut microbiota and lipid metabolism[J]. Rev Endocr Metab Disord, 2019, 20(4): 461-472. doi: 10.1007/s11154-019-09512-0
    [4] 牛璐, 王跃飞, 赵鑫, 等. 中药调控肠道菌群代谢产物的研究进展[J]. 天津中医药, 2021, 38(2): 254-260. https://www.cnki.com.cn/Article/CJFDTOTAL-TJZY202102029.htm

    NIU L, WANG YF, ZHAO X, et al. Research progress on the regulation of gut microbial metabolites by traditional Chinese medicine[J]. J Tianjin Univ Tradit Chin Med, 2021, 38(2): 254-260. https://www.cnki.com.cn/Article/CJFDTOTAL-TJZY202102029.htm
    [5] RATAJCZAK W, RYŁ A, MIZERSKI A, et al. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs)[J]. Acta Biochim Pol, 2019, 66(1): 1-12.
    [6] YANG WJ, YU TM, HUANG XS, et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity[J]. Nat Commun, 2020, 11(1): 4457. doi: 10.1038/s41467-020-18262-6
    [7] WANG G, YU Y, WANG YZ, et al. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy[J]. J Cell Physiol, 2019, 234(10): 17023-17049. doi: 10.1002/jcp.28436
    [8] PORTINCASA P, BONFRATE L, VACCA M, et al. Gut microbiota and short chain fatty acids: Implications in glucose homeostasis[J]. Int J Mol Sci, 2022, 23(3): 1105. doi: 10.3390/ijms23031105
    [9] HUANG W, MAN Y, GAO CL, et al. Short-chain fatty acids ameliorate diabetic nephropathy via GPR43-mediated inhibition of oxidative stress and NF-κB signaling[J]. Oxid Med Cell Longev, 2020, 2020: 4074832.
    [10] COLOSIMO S, TOMLINSON JW. Bile acids as drivers and biomarkers of hepatocellular carcinoma[J]. World J Hepatol, 2022, 14(9): 1730-1738. doi: 10.4254/wjh.v14.i9.1730
    [11] LI JN, DAWSON PA. Animal models to study bile acid metabolism[J]. Biochim Biophys Acta Mol Basis Dis, 2019, 1865(5): 895-911. doi: 10.1016/j.bbadis.2018.05.011
    [12] WINSTON JA, THERIOT CM. Diversification of host bile acids by members of the gut microbiota[J]. Gut Microbes, 2020, 11(2): 158-171. doi: 10.1080/19490976.2019.1674124
    [13] MCKENZIE C, TAN J, MACIA L, et al. The nutrition-gut microbiome-physiology axis and allergic diseases[J]. Immunol Rev, 2017, 278(1): 277-295. doi: 10.1111/imr.12556
    [14] FIORUCCI S, CARINO A, BALDONI M, et al. Bile acid signaling in inflammatory bowel diseases[J]. Dig Dis Sci, 2021, 66(3): 674-693. doi: 10.1007/s10620-020-06715-3
    [15] DELEU S, MACHIELS K, RAES J, et al. Short chain fatty acids and its producing organisms: An overlooked therapy for IBD?[J]. EBioMedicine, 2021, 66: 103293. doi: 10.1016/j.ebiom.2021.103293
    [16] WANG J, WANG L, LOU GH, et al. Coptidis Rhizoma: A comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology[J]. Pharm Biol, 2019, 57(1): 193-225. doi: 10.1080/13880209.2019.1577466
    [17] SUN Y, LENON GB, YANG AWH. Phellodendri cortex: A phytochemical, pharmacological, and pharmacokinetic review[J]. Evid Based Complement Alternat Med, 2019, 2019: 7621929.
    [18] WANG ZL, WANG S, KUANG Y, et al. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis[J]. Pharm Biol, 2018, 56(1): 465-484. doi: 10.1080/13880209.2018.1492620
    [19] LI X, TANG ZW, WEN L, et al. Matrine: A review of its pharmacology, pharmacokinetics, toxicity, clinical application and preparation researches[J]. J Ethnopharmacol, 2021, 269: 113682. doi: 10.1016/j.jep.2020.113682
    [20] PAN LL, LI ZZ, WANG YF, et al. Network pharmacology and metabolomics study on the intervention of traditional Chinese medicine Huanglian Decoction in rats with type 2 diabetes mellitus[J]. J Ethnopharmacol, 2020, 258: 112842. doi: 10.1016/j.jep.2020.112842
    [21] 章常华, 魏悦, 施旻, 等. 知母黄柏药对对肥胖症大鼠模型降脂作用的实验研究[J]. 时珍国医国药, 2021, 32(4): 773-776.

    ZHANG CH, WEI Y, SHI M, et al. Experimental study on the lipid-lowering effect of Anemarrhenae Rhizoma-Phelloden-dri Chinensis Cortex herb pair on obesity rat model[J]. Lishizhen Med Mater Med Res, 2021, 32(4): 773-776.
    [22] XIAO SW, LIU C, CHEN MJ, et al. Scutellariae radix and coptidis rhizoma ameliorate glycolipid metabolism of type 2 diabetic rats by modulating gut microbiota and its metabolites[J]. Appl Microbiol Biotechnol, 2020, 104(1): 303-317. doi: 10.1007/s00253-019-10174-w
    [23] SHAO J, LIU Y, WANG H, et al. An integrated fecal microbiome and metabolomics in T2DM rats reveal antidiabetes effects from host-microbial metabolic axis of EtOAc extract from Sophora flavescens[J]. Oxid Med Cell Longev, 2020, 2020: 1805418.
    [24] WANG BT, KONG QM, LI X, et al. A high-fat diet increases gut microbiota biodiversity and energy expenditure due to nutrient difference[J]. Nutrients, 2020, 12(10): 3197. doi: 10.3390/nu12103197
    [25] YUAN XY, XUE J, TAN YX, et al. Albuca bracteate polysaccharides synergistically enhance the anti-tumor efficacy of 5-fluorouracil against colorectal cancer by modulating β-catenin signaling and intestinal flora[J]. Front Pharmacol, 2021, 12: 736627. doi: 10.3389/fphar.2021.736627
    [26] KIM KH, PARK D, JIA BL, et al. Identification and characterization of major bile acid 7α-dehydroxylating bacteria in the human gut[J]. mSystems, 2022, 7(4): e0045522. doi: 10.1128/msystems.00455-22
    [27] ZHAO H, GAO X, LIU ZZ, et al. Sodium alginate prevents non-alcoholic fatty liver disease by modulating the gut-liver axis in high-fat diet-fed rats[J]. Nutrients, 2022, 14(22): 4846. doi: 10.3390/nu14224846
    [28] 黄玉普, 吴大章, 王森. 黄芩的药理作用及其药对研究进展[J]. 中国药业, 2022, 31(15): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGZ202215030.htm

    HUANG YP, WU DZ, WANG S. Research progress on pharmacological action of scutellariae Radix and its drug pair[J]. China Pharm, 2022, 31(15): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YYGZ202215030.htm
    [29] 彭程程, 姚亮亮, 曾国威, 等. 葛根芩连汤干预胰岛素抵抗大鼠的粪便代谢组及相关菌群研究[J]. 中药新药与临床药理, 2021, 32(12): 1737-1744.

    PENG CC, YAO LL, ZENG GW, et al. Study on fecal metabolic mechanism and related flora of Gegen Qinlian Decoction in rats with insulin resistance[J]. Tradit Chin Drug Res Clin Pharmacol, 2021, 32(12): 1737-1744.
    [30] ZHAO LJ, MA P, PENG Y, et al. Amelioration of hyperglycaemia and hyperlipidaemia by adjusting the interplay between gut microbiota and bile acid metabolism: Radix Scutellariae as a case[J]. Phytomedicine, 2021, 83: 153477. doi: 10.1016/j.phymed.2021.153477
    [31] FANG YK, YAN C, ZHAO Q, et al. The roles of microbial products in the development of colorectal cancer: A review[J]. Bioengineered, 2021, 12(1): 720-735. doi: 10.1080/21655979.2021.1889109
    [32] GOOSSENS JF, BAILLY C. Ursodeoxycholic acid and cancer: From chemoprevention to chemotherapy[J]. Pharmacol Ther, 2019, 203: 107396.
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  230
  • HTML全文浏览量:  37
  • PDF下载量:  27
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-06
  • 网络出版日期:  2023-05-19
  • 发布日期:  2023-05-10

目录

    /

    返回文章
    返回