留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

网络药理学结合转录组学方法探讨防己黄芪汤治疗肾病综合征作用机制

万浩婷 刘晴 刘路瑶 谢林彤 朱慧 刘晓

万浩婷, 刘晴, 刘路瑶, 谢林彤, 朱慧, 刘晓. 网络药理学结合转录组学方法探讨防己黄芪汤治疗肾病综合征作用机制[J]. 南京中医药大学学报, 2023, 39(4): 346-358. doi: 10.14148/j.issn.1672-0482.2023.0346
引用本文: 万浩婷, 刘晴, 刘路瑶, 谢林彤, 朱慧, 刘晓. 网络药理学结合转录组学方法探讨防己黄芪汤治疗肾病综合征作用机制[J]. 南京中医药大学学报, 2023, 39(4): 346-358. doi: 10.14148/j.issn.1672-0482.2023.0346
WAN Hao-ting, LIU Qing, LIU Lu-yao, XIE Lin-tong, ZHU Hui, LIU Xiao. Mechanism of Fangji Huangqi Tang against Nephrotic Syndrome Based on Network Pharmacology and Transcriptomics Methods[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(4): 346-358. doi: 10.14148/j.issn.1672-0482.2023.0346
Citation: WAN Hao-ting, LIU Qing, LIU Lu-yao, XIE Lin-tong, ZHU Hui, LIU Xiao. Mechanism of Fangji Huangqi Tang against Nephrotic Syndrome Based on Network Pharmacology and Transcriptomics Methods[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(4): 346-358. doi: 10.14148/j.issn.1672-0482.2023.0346

网络药理学结合转录组学方法探讨防己黄芪汤治疗肾病综合征作用机制

doi: 10.14148/j.issn.1672-0482.2023.0346
基金项目: 

江苏省高等学校基础科学(自然科学)重大项目 21KJA360008

详细信息
    作者简介:

    万浩婷, 女, 硕士研究生, E-mail: 15962763705@163.com

    通讯作者:

    刘晓, 女, 副教授, 主要从事中药炮制机理与饮片质量控制研究, E-mail: 300999@njucm.edu.cn

  • 中图分类号: R285.5

Mechanism of Fangji Huangqi Tang against Nephrotic Syndrome Based on Network Pharmacology and Transcriptomics Methods

  • 摘要:   目的  基于转录组学与网络药理学方法探讨防己黄芪汤治疗肾病综合征的作用机制。  方法  收集网络药理学和转录组学的共同靶点, 进行GO/KEGG功能富集分析。构建蛋白质-蛋白质相互作用(PPI)并进行网络拓扑分析, 确定潜在核心靶点。构建通路-靶点网络图, 确定发挥关键作用的信号通路。采用qPCR、Western blot法和免疫荧光染色验证大鼠肾脏组织中核心靶点的mRNA和蛋白表达水平。  结果  PPI分析得到7个潜在核心靶点AKT1、AMPK、CPT1B、NF-κB1、P53、TGF-β1和TLR4, 主要信号通路为AMPK信号通路、PI3K-Akt信号通路、PPAR信号通路、NF-κB信号通路、TGF-β信号通路、P53信号通路、MAPK信号通路、JAK-STAT信号通路和FoxO信号通路。经动物体内实验验证, 防己黄芪汤显著下调AKT1、CPT1B、NF-κB1、P53、TGF-β1、TLR4的mRNA和蛋白表达水平(P < 0.05), 上调AMPK的mRNA和蛋白表达水平(P < 0.05)。  结论  从网络药理学和转录组学角度初步阐明了防己黄芪汤治疗肾病综合征多成分、多靶点、多途径的整体调节特点, 可为后续的药理学研究和临床应用提供依据与参考。

     

  • 图  1  中药活性成分-靶点网络

    Figure  1.  Active ingredient-target network of traditional Chinese medicine

    图  2  防己黄芪汤对各组小鼠肾病综合征相关指标的影响

    注; 与正常组比较, * * *P < 0.001;与模型组比较, ##P < 0.01, ###P < 0.001。x±s, n=10。

    Figure  2.  Effects of Fangji Huangqi Tang on indexes related to nephrotic syndrome

    图  3  防己黄芪汤对各组大鼠肾脏组织的病理学影响(HE, ×200;Masson, ×200)

    Figure  3.  Effects of Fangji Huangqi Tang on histopathological morphology of kidneys in all groups (HE, ×200; Masson, ×200)

    图  4  正常组vs.模型组、防己黄芪汤组vs.模型组差异基因表达的火山图

    Figure  4.  Volcano diagram of differential expression gene of control group vs. model group and Fangji Huangqi Tang group vs. model group

    图  5  转录组学差异基因表达热图

    Figure  5.  Heat map of differential expression genes by transcriptomics

    图  6  网路药理学和转录组学交集靶点基因的韦恩图

    Figure  6.  Venn diagram of intersection target genes of network pharmacology and transcriptomics

    图  7  GO功能富集分析和KEGG通路富集分析

    Figure  7.  GO functional enrichment analysis and KEGG pathway enrichment analysis

    图  8  蛋白质互作网络图

    Figure  8.  Protein-protein interaction (PPI) network

    图  9  潜在核心靶点-通路网络图

    Figure  9.  Potential core target-pathway network

    图  10  qPCR检测肾组织中AKT1、AMPK、CPT1B、NF-κB1、P53、TGF-β1、TLR4的mRNA表达

    注; 与正常组比较, * * *P < 0.001;与模型组比较, ##P < 0.01, ###P < 0.001。x±s, n=3。

    Figure  10.  Expressions of AKT1, AMPK, CPT1B, NF-κB1, P53, TGF-β1 and TLR4 mRNA in kidney tissues by qPCR

    图  11  Western blot检测肾组织中AKT1、p-AKT1、AMPK、p-AMPK、CPT1B、NF-κB1、P53、TGF-β1、TLR4的蛋白表达

    注; 与正常组比较, *P < 0.05, * *P < 0.01, * * *P < 0.001;与模型组比较, #P < 0.05, ##P < 0.01, ###P < 0.001。x±s, n=3。

    Figure  11.  Expressions of AKT1, p-AKT1, AMPK, p-AMPK, CPT1B, NF-κB1, P53, TGF-β1 and TLR4 protein in kidney tissues by Western blot

    图  12  免疫荧光染色法检测肾组织中AKT1、AMPK、CPT1B、NF-κB1、P53、TGF-β1、TLR4的蛋白表达(×200)

    Figure  12.  Expressions of AKT1, AMPK, CPT1B, NF-κB1, P53, TGF-β1 and TLR4 protein in kidney tissues by immunofluorescence (×200)

    图  13  防己黄芪汤治疗肾病综合征的靶点通路分析图

    Figure  13.  Target pathway analysis of Fangji Huangqi Tang against nephrotic syndrome

    表  1  目的基因的引物序列

    Table  1.   Primer sequence of target genes

    基因 序列(5’-3’) 产物长
    度/bp
    AKT F: GCTTCTACGGTGCGGAGATTGTGT
    R: GTCCGTTATCTTGATGTGCCCGTC
    125
    AMPK F: GACCTCGGTCAAGTGTCGATTC
    R: AACGGGCTAAAGCAGTGATAAGA
    168
    CPT1B F: ATGTAAGTGACTGGTGGGAAGA
    R: TGGGATGCGTGTAGTGTTGAA
    260
    NF-κB1 F: AGATGTGGTGGAGGACTTGCT
    R: CCGTTGGGGTGGTTGATAA
    162
    P53 F: AAGGAAATCCGTATGCTGAGTAT
    R: GCACAAACACGAACCTCAAAG
    235
    TGF-β1 F: CATTTGGAGCCTGGACACACA
    R: GCTTGCGACCCACGTAGTAGAC
    136
    TLR4 F: AAGACTATCATCAGTGTATCGGTGG
    R: CGTTTCTCACCCAGTCCTCATT
    181
    GAPDH F: CGTATCGGACGCCTGGTT
    R: AGGTCAATGAAGGGGTCGTT
    83
    下载: 导出CSV

    表  2  防己黄芪汤活性成分基本信息

    Table  2.   Basic information of active ingredients of Fangji Huangqi Tang

    序号 成分名称 口服生物利用度(OB)/% 类药性(DL) 归属药物
    1 Calycosin-7-O-D-glucoside 36.52 0.23 防己
    2 Corydine 37.16 0.55 防己
    3 Isoliguiritigenin 33.64 0.26 防己
    4 Fangchinoline 41.73 0.21 防己
    5 (-)-Tetrahydropalmatine 73.94 0.64 防己
    6 (+)-Tetrandrine 36.64 0.20 防己
    7 Liquiritigenin 32.76 0.18 防己
    8 Isoliquiritin 38.61 0.60 防己
    9 Glycycoumarin 43.56 0.44 黄芪
    10 Atractylenolide Ⅲ 35.95 0.21 黄芪
    11 Atractylenolide Ⅰ 37.37 0.19 黄芪
    12 Isolicoflavonol 45.17 0.42 黄芪
    13 Licoricone 63.58 0.47 黄芪
    14 Atractylenolide Ⅱ 52.36 0.19 黄芪
    15 Licoricidin 30.99 0.62 黄芪
    16 (+)-Cassythicine 32.64 0.20 白术
    17 Nantenine 35.49 0.74 白术
    18 Cyclanoline 42.64 0.57 白术
    19 Liquiritin 39.20 0.52 甘草
    20 Astragaloside Ⅳ 41.78 0.63 甘草
    21 Licochalcone B 76.76 0.19 甘草
    22 Methylnissolin 3-O-glucoside 36.22 0.18 甘草
    23 Calycosin 45.75 0.24 甘草
    24 Fenfangjine F 43.30 0.23 甘草
    25 Astragaloside Ⅶ 30.94 0.45 甘草
    26 Formononetin 69.67 0.22 甘草
    27 Vestitol 74.66 0.24 甘草
    28 Glycyrrhizin 39.62 0.21 甘草
    29 Astragaloside Ⅱ 46.06 0.23 甘草
    下载: 导出CSV

    表  3  潜在核心靶点在蛋白互作网络中的参数

    Table  3.   Parameters of potential core targets in protein-protein interaction (PPI)

    基因名称 度值 接近中心性 中介中心性 拓扑系数
    AKT1 57 0.793 8 0.154 3 0.261 8
    AMPK 56 0.763 2 0.132 5 0.300 5
    P53 52 0.725 4 0.113 6 0.313 0
    TLR4 41 0.623 8 0.096 5 0.380 4
    CPT1B 32 0.526 9 0.075 3 0.443 3
    NF-κB1 30 0.503 2 0.072 1 0.435 8
    TGF-β1 26 0.472 5 0.063 8 0.506 7
    下载: 导出CSV
  • [1] AGRAWAL S, ZARITSKY JJ, FORNONI A, et al. Dyslipidaemia in nephrotic syndrome: Mechanisms and treatment[J]. Nat Rev Nephrol, 2018, 14(1): 57-70. doi: 10.1038/nrneph.2017.155
    [2] AL-AZZAWI HF, OBI OC, SAFI J, et al. Nephrotic syndrome-induced thromboembolism in adults[J]. Int J Crit Illn Inj Sci, 2016, 6(2): 85-88. doi: 10.4103/2229-5151.183019
    [3] YILMAZ S, ATESSAHIN A, SAHNA E, et al. Protective effect of lycopene on adriamycin-induced cardiotoxicity and nephrotoxicity[J]. Toxicology, 2006, 218(2/3): 164-171.
    [4] 汪小莉, 刘晓, 夏春燕, 等. 防己黄芪汤药理作用及各单味药化学成分研究进展[J]. 中草药, 2016, 47(19): 3527-3534. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO201619033.htm

    WANG XL, LIU X, XIA CY, et al. Research progress in chemical constituents in single herbs of Fangji Huangqi Decoction and its pharmacological activities[J]. Chin Tradit Herb Drugs, 2016, 47(19): 3527-3534. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO201619033.htm
    [5] ZHANG RZ, ZHU X, BAI H, et al. Network pharmacology databases for traditional Chinese medicine: Review and assessment[J]. Front Pharmacol, 2019, 10: 123. doi: 10.3389/fphar.2019.00123
    [6] TAMAN H, FENTON CG, HENSEL IV, et al. Transcriptomic landscape of treatment—Naïve ulcerative colitis[J]. J Crohns Colitis, 2018, 12(3): 327-336. doi: 10.1093/ecco-jcc/jjx139
    [7] 贡磊磊, 许海玉, 王岚, 等. 基于RNA-Seq高通量测序分析脑心通胶囊抑制炎症反应转录组学特征[J]. 中国中药杂志, 2020, 45(1): 149-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202001023.htm

    GONG LL, XU HY, WANG L, et al. Analysis on transcriptionomic characteristics of Naoxintong Capsules in prevention of post-ischemic inflammation based on RNA-Seq technology[J]. China J Chin Mater Med, 2020, 45(1): 149-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202001023.htm
    [8] 汪颀浩, 高继海, 陈海媚, 等. 转录组学探讨附子治疗急性心衰大鼠的作用机制[J]. 中国中药杂志, 2019, 44(1): 131-140. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201901020.htm

    WANG QH, GAO JH, CHEN HM, et al. Transcriptomics study on mechanism of Aconiti Lateralis Radix Praeparata in treatment of rats with acute heart failure[J]. China J Chin Mater Med, 2019, 44(1): 131-140. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201901020.htm
    [9] 张仲景, 王叔和. 新编金匮要略方论[M]. 北京: 学苑出版社, 2008: 39.

    ZHANG ZJ, WANG SH. Synopsis of New Golden Chamber[M]. Beijing: Xueyuan press, 2008: 39.
    [10] LIU X, WANG XL, ZHU TT, et al. Study on spectrum-effect correlation for screening the effective components in Fangji Huangqi Tang basing on ultra-high performance liquid chromatography-mass spectrometry[J]. Phytomedicine, 2018, 47: 81-92. doi: 10.1016/j.phymed.2018.04.053
    [11] 俞东容, 杨汝春, 林宜, 等. 防己黄芪汤对阿霉素肾病大鼠蛋白尿及足细胞病变的影响[J]. 中国中西医结合肾病杂志, 2009, 10(4): 295-298, 377. https://www.cnki.com.cn/Article/CJFDTOTAL-JXSB200904007.htm

    YU DR, YANG RC, LIN Y, et al. Impact of fangjihuangqi decoction on proteinuria and podocyte in nephrotic rats induced by adriamycin[J]. Chin J Integr Tradit West Nephrol, 2009, 10(4): 295-298, 377. https://www.cnki.com.cn/Article/CJFDTOTAL-JXSB200904007.htm
    [12] 李星瑶, 赵延红, 蔡子墨, 等. 温阳化浊方对阿霉素肾病大鼠保护作用及TRPC6表达的影响[J]. 中医药学报, 2021, 49(9): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXB202109008.htm

    LI XY, ZHAO YH, CAI ZM, et al. Protection effect of Wenyang Huazhuo formula on adriamycin-induced nephropathy in rats and its influence to expression of TRPC6[J]. Acta Chin Med Pharmacol, 2021, 49(9): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXB202109008.htm
    [13] PERTEA M, PERTEA GM, ANTONESCU CM, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nat Biotechnol, 2015, 33(3): 290-295. doi: 10.1038/nbt.3122
    [14] WANG K, LI MY, HAKONARSON H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data[J]. Nucleic Acids Res, 2010, 38(16): e164. doi: 10.1093/nar/gkq603
    [15] FLOREA L, SONG L, SALZBERG SL. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues[J]. F1000Research, 2013, 2: 188. doi: 10.12688/f1000research.2-188.v1
    [16] ROBINSON MD, MCCARTHY DJ, SMYTH GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1): 139-140. doi: 10.1093/bioinformatics/btp616
    [17] PERTEA M, PERTEA GM, ANTONESCU CM, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nat Biotechnol, 2015, 33(3): 290-295. doi: 10.1038/nbt.3122
    [18] 王秀阁, 闫冠池, 金迪, 等. 基于AMPK/mTOR/ULK1通路探讨解毒通络保肾方改善糖尿病肾脏疾病的作用机制[J]. 北京中医药大学学报, 2022, 45(12): 1213-1222.

    WANG XG, YAN GC, JIN D, et al. Based on AMPK/mTOR/ULK1 pathway, the mechanism of Jiedu Tongluo Baoshen recipe in improving diabetic kidney disease was discussed[J]. J Beijing Univ Tradit Chin Med, 2022, 45(12): 1213-1222.
    [19] 李雅纯, 方敬, 杨帆, 等. 化瘀通络中药对糖尿病肾病大鼠肾脏和AMPK/Nox4信号通路的作用研究[J]. 中草药, 2021, 52(11): 3278-3285. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202111015.htm

    LI YC, FANG J, YANG F, et al. Effect of Huayu Tongluo Chinese medicines on kidney and AMPK/Nox4 signaling pathway of rats with diabetic nephropathy[J]. Chin Tradit Herb Drugs, 2021, 52(11): 3278-3285. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202111015.htm
    [20] 马思齐, 许骏尧, 郑亚威, 等. 基于AMPK/mTOR信号通路探讨潜阳育阴颗粒对高血压肾损伤的影响[J]. 中华中医药杂志, 2022, 37(6): 3559-3563. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202206115.htm

    MA SQ, XU JY, ZHENG YW, et al. Effects of Qianyang Yuyin Granules on renal injury of spontaneously hypertensive rats based on AMPK/mTOR signal pathway[J]. China J Tradit Chin Med Pharm, 2022, 37(6): 3559-3563. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202206115.htm
    [21] 杨秀芳, 白秀云, 聂浩坤, 等. 肾消通络方对糖尿病db/db小鼠肾脏TLR4/NF-κB信号通路的影响[J]. 中华中医药杂志, 2021, 36(2): 723-727. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202102026.htm

    YANG XF, BAI XY, NIE HK, et al. Effects of Shenxiao Tongluo Formula on TLR4/NF-κB signaling pathway in kidney of diabetic db/db mice[J]. China J Tradit Chin Med Pharm, 2021, 36(2): 723-727. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202102026.htm
    [22] 陈飞, 罗惠民, 谢瑜, 等. 姜黄素通过调控miR-29-3p和TLR4/NF-κB信号通路改善肾间质纤维化[J]. 甘肃科学学报, 2022, 34(5): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKX202205005.htm

    CHEN F, LUO HM, XIE Y, et al. Curcumin improves renal interstitial fibrosis by regulating miR-29-3p and TLR4/NF-κB signaling pathway[J]. J Gansu Sci, 2022, 34(5): 26-34. https://www.cnki.com.cn/Article/CJFDTOTAL-GSKX202205005.htm
    [23] 熊刚, 邹华, 胡承莲, 等. 基于HMGB1/TLR4信号通路评价五味子乙素对2型糖尿病肾病大鼠肾脏功能的保护作用[J]. 医学研究杂志, 2019, 48(3): 140-143. https://www.cnki.com.cn/Article/CJFDTOTAL-YXYZ201903034.htm

    XIONG G, ZOU H, HU CL, et al. Evalution of renal function protection of schisandrin B in rates with type 2 diabetic nephropathy based on HMGB1/TLR4 pathway[J]. J Med Res, 2019, 48(3): 140-143. https://www.cnki.com.cn/Article/CJFDTOTAL-YXYZ201903034.htm
    [24] 刘伟, 朴元林. 中药对糖尿病肾病PI3K/Akt信号通路影响的研究进展[J]. 北京中医药, 2022, 41(8): 935-938. https://www.cnki.com.cn/Article/CJFDTOTAL-BJZO202208028.htm

    LIU W, PIAO YL. Research progress on the effect of Chinese herbal medicine on PI3K/Akt signal pathway in diabetic nephropathy[J]. Beijing J Tradit Chin Med, 2022, 41(8): 935-938. https://www.cnki.com.cn/Article/CJFDTOTAL-BJZO202208028.htm
    [25] 列倍锋, 程芳, 段婷婷, 等. 黄芪散微丸对糖尿病肾病大鼠肾脏PI3K/Akt/mTOR通路及自噬的影响[J]. 中国实验方剂学杂志, 2022, 28(7): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202207002.htm

    LIE BF, CHENG F, DUAN TT, et al. Effect of huangqisan pellets on PI3K/Akt/mTOR signaling pathway and autophagy in kidney of diabetic nephropathy rats[J]. Chin J Exp Tradit Med Formulae, 2022, 28(7): 11-17. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202207002.htm
    [26] 齐平平, 徐祖清, 金华. 芦荟素对大鼠肾缺血再灌注损伤的作用机制[J]. 中成药, 2022, 44(4): 1272-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYA202204043.htm

    QI PP, XU ZQ, JIN H. Mechanism of aloin on renal ischemia-reperfusion injury in rats[J]. Chin Tradit Pat Med, 2022, 44(4): 1272-1276. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYA202204043.htm
    [27] 昂格力玛, 宝苏日高, 孟永梅. 基于TGF-β/Smad信号通路探讨蒙药大黄-3汤对慢性肾功能衰竭大鼠的肾脏保护作用[J]. 中国药理学通报, 2022, 38(7): 1099-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-YAOL202207024.htm

    ANG G, BAO S, MENG YM. On the renal protective effect of Mongolian medicine rhubarb-3 decoction on rats with chronic renal failure based on TGF-β/Smad signaling pathway[J]. Chin Pharmacol Bull, 2022, 38(7): 1099-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-YAOL202207024.htm
    [28] 汪四海, 方朝晖, 倪英群, 等. 丹蛭降糖胶囊对糖尿病肾病大鼠肾脏TGF-β1/Smad3信号通路和AGEs/RAGE水平的影响[J]. 中华中医药杂志, 2021, 36(4): 2019-2024. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202104055.htm

    WANG SH, FANG ZH, NI YQ, et al. Effects of Danzhi Jiangtang Capsules on renal TGF-β1/Smad3 signaling pathway and AGEs/RAGE level in diabetic nephropathy rats[J]. China J Tradit Chin Med Pharm, 2021, 36(4): 2019-2024. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202104055.htm
    [29] 张爱莉, 任宗涛. 转化生长因子β受体Ⅰ及Smad4蛋白在肾癌中的表达及意义[J]. 临床泌尿外科杂志, 2013, 28(11): 819-821, 825. https://www.cnki.com.cn/Article/CJFDTOTAL-LCMW201311009.htm

    ZHANG AL, REN ZT. Expression and clinical significance of transforming growth factor β receptorⅠand Smad4 in renal carcinoma[J]. J Clin Urol, 2013, 28(11): 819-821, 825. https://www.cnki.com.cn/Article/CJFDTOTAL-LCMW201311009.htm
    [30] 任苗苗, 杜玄一. 转化生长因子β在慢性肾脏病中的作用[J]. 临床荟萃, 2012, 27(24): 2184-2188. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFC201224031.htm

    REN MM, DU XY. Role of transforming factor β in chronic kidney disease[J]. Clin Focus, 2012, 27(24): 2184-2188. https://www.cnki.com.cn/Article/CJFDTOTAL-LCFC201224031.htm
    [31] 郑栓. 白藜芦醇对慢性肾衰竭大鼠肾脏组织BMP-7、TGF-β1、Smads信号通路表达的影响[J]. 中医学报, 2018, 33(4): 616-619. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZK201804026.htm

    ZHENG S. Effect of resveratrol on the expression of BMP-7, TGF-β1 and Smads signaling pathway in renal tissue of rats with chronic renal failure[J]. Acta Chin Med, 2018, 33(4): 616-619. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZK201804026.htm
    [32] 张王宁, 李爱平, 刘少博, 等. 基于代谢组学的阿霉素肾病大鼠模型损伤程度评价[J]. 中草药, 2018, 49(2): 360-367. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO201802015.htm

    ZHANG WN, LI AP, LIU SB, et al. Evaluation of injury degree of rat nephropathy model induced by doxorubicin based on metabolomics[J]. Chin Tradit Herb Drugs, 2018, 49(2): 360-367. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO201802015.htm
    [33] 郭晓芳, 顾勤, 刘宁, 等. P53在急性肾损伤小鼠肾脏的表达及其与细胞凋亡的关系[J]. 中国病理生理杂志, 2012, 28(11): 1971-1975. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBLS201211012.htm

    GUO XF, GU Q, LIU N, et al. Relationship between apoptosis and change of P53 expression in mouse renal tissues after acute kidney injury[J]. Chin J Pathophysiol, 2012, 28(11): 1971-1975. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBLS201211012.htm
    [34] HIGGINS SP, TANG Y, HIGGINS CE, et al. TGF-β1/p53 signaling in renal fibrogenesis[J]. Cell Signal, 2018, 43: 1-10.
    [35] MA ZW, LI L, LIVINGSTON MJ, et al. p53/microRNA-214/ULK1 axis impairs renal tubular autophagy in diabetic kidney disease[J]. J Clin Invest, 2020, 130(9): 5011-5026.
  • 加载中
图(13) / 表(3)
计量
  • 文章访问数:  477
  • HTML全文浏览量:  59
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 网络出版日期:  2023-04-17
  • 发布日期:  2023-04-10

目录

    /

    返回文章
    返回