留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超快速液相色谱-三重四级杆/线性离子阱质谱法比较分析竹节参根与根茎中多元指标成分

邹立思 陈佳丽 谈梦霞 刘训红 陈舒妤 石婧婧 王程成 梅余琪 魏丽芳

邹立思, 陈佳丽, 谈梦霞, 刘训红, 陈舒妤, 石婧婧, 王程成, 梅余琪, 魏丽芳. 超快速液相色谱-三重四级杆/线性离子阱质谱法比较分析竹节参根与根茎中多元指标成分[J]. 南京中医药大学学报, 2023, 39(3): 265-273. doi: 10.14148/j.issn.1672-0482.2023.0265
引用本文: 邹立思, 陈佳丽, 谈梦霞, 刘训红, 陈舒妤, 石婧婧, 王程成, 梅余琪, 魏丽芳. 超快速液相色谱-三重四级杆/线性离子阱质谱法比较分析竹节参根与根茎中多元指标成分[J]. 南京中医药大学学报, 2023, 39(3): 265-273. doi: 10.14148/j.issn.1672-0482.2023.0265
ZOU Li-si, CHEN Jia-li, TAN Meng-xia, LIU Xun-hong, CHEN Shu-yu, SHI Jing-jing, WANG Cheng-cheng, MEI Yu-qi, WEI Li-fang. Comparative Analysis of Multiple-Index Constituents in Roots and Rhizomes of Panax japonicus by UFLC-QTRAP-MS/MS[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(3): 265-273. doi: 10.14148/j.issn.1672-0482.2023.0265
Citation: ZOU Li-si, CHEN Jia-li, TAN Meng-xia, LIU Xun-hong, CHEN Shu-yu, SHI Jing-jing, WANG Cheng-cheng, MEI Yu-qi, WEI Li-fang. Comparative Analysis of Multiple-Index Constituents in Roots and Rhizomes of Panax japonicus by UFLC-QTRAP-MS/MS[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(3): 265-273. doi: 10.14148/j.issn.1672-0482.2023.0265

超快速液相色谱-三重四级杆/线性离子阱质谱法比较分析竹节参根与根茎中多元指标成分

doi: 10.14148/j.issn.1672-0482.2023.0265
基金项目: 

江苏高校优势学科建设工程资助项目 YSXK-2014

江苏高校品牌专业建设工程资助项目 PPZY2015A070

详细信息
    作者简介:

    邹立思, 男, 实验师, E-mail: zlstcm@126.com

    通讯作者:

    刘训红, 男, 教授, 主要从事中药鉴定与品质评价研究, E-mail: liuxunh1959@163.com

  • 中图分类号: R284

Comparative Analysis of Multiple-Index Constituents in Roots and Rhizomes of Panax japonicus by UFLC-QTRAP-MS/MS

  • 摘要:   目的  建立超快速液相色谱-三重四级杆/线性离子阱质谱法(UFLC-QTRAP-MS/MS)同时测定竹节参根与根茎中皂苷、氨基酸及核苷类共33种成分含量的方法。  方法  采用XBridge®C18(4.6 mm×100 mm, 3.5 μm), 以0.1%甲酸水-0.1%甲酸乙腈为流动相, 梯度洗脱, 流速0.8 mL·min-1, 柱温30 ℃, 多反应监测离子扫描模式(MRM)测定。根据33种目标成分的含量, 采用聚类、非线性映射及主成分分析进行综合评价。  结果  33种成分在一定浓度范围内均呈现良好的线性关系, 相关系数均大于0.999 0;精密度、重复性和稳定性良好; 平均加样回收率为96.90%~101.6%, RSD均≤3.6%。统计分析结果显示从33种成分的含量角度, 竹节参根与根茎中皂苷、氨基酸及核苷类成分较为相似。  结论  所建立的方法准确、可靠, 可为竹节参药材内在质量的综合评价和全面控制提供新的方法参考, 同时为竹节参根的开发利用提供基础资料。

     

  • 图  1  33种成分的MRM图

    Figure  1.  Multi-reaction monitoring (MRM) of 33 constituents

    图  2  竹节参根与根茎的总离子流色谱图

    Figure  2.  Total ion chromatogram (TIC) of roots and rhizomes of Panax japonicus

    图  3  竹节参根与根茎的总含量(A)及百分含量比较图(B)

    注:As.氨基酸; Ns.核苷; Ss.皂苷

    Figure  3.  The total content (A) and percentage content (B) in roots and rhizomes of Panax japonicus

    图  4  竹节参根与根茎的聚类分析结果

    Figure  4.  Results of hierarchical cluster analysis of roots and rhizomes of Panax japonicus

    图  5  竹节参根与根茎的非线性映射分析结果

    Figure  5.  Results of nonlinear mapping analysis of roots and rhizomes of Panax japonicus

    图  6  主成分的方差贡献率累积图

    Figure  6.  Accumulative variance contribution of principal components

    图  7  7个主成分的特征值

    Figure  7.  Eigenvalues of seven principal components

    表  1  竹节参样品信息

    Table  1.   Information of samples of Panax japonicus

    样品 产地
    R1(根), RM1(根茎) 湖北恩施(栽培)
    R2(根), RM2(根茎) 湖北恩施(栽培)
    R3(根), RM3(根茎) 湖北恩施(栽培)
    R4(根), RM4(根茎) 湖北恩施(栽培)
    R5(根), RM5(根茎) 四川巴中(栽培)
    R6(根), RM6(根茎) 四川普洱(栽培)
    R7(根), RM7(根茎) 四川普洱(栽培)
    R8(根), RM8(根茎) 云南文山(栽培)
    R9(根), RM9(根茎) 湖北恩施(栽培)
    R10(根), RM10(根茎) 湖北恩施(栽培)
    R11(根), RM11(根茎) 江西遂川(野生)
    R12(根), RM12(根茎) 四川成都(野生)
    R13(根), RM13(根茎) 四川乐山(野生)
    下载: 导出CSV

    表  2  优化的质谱条件参数

    Table  2.   Optimized MS/MS parameters

    化合物 分子式 tR/min MRM参数
    离子对m/z 碰撞电压/V 碰撞能量/eV 离子模式
    L-His C6H9N3O2 1.15 156.080/110.030 100.00 16.00 ESI+
    L-Arg C6H14N4O2 1.17 175.120/70.020 100.00 18.00 ESI+
    L-Ser C3H7NO3 1.24 106.050/59.990 100.00 8.00 ESI+
    L-Ala C3H7NO2 1.25 90.060/44.020 100.00 10.00 ESI+
    L-Asp C4H7NO4 1.25 134.050/87.960 59.00 10.00 ESI+
    L-Thr C4H9NO3 1.27 120.070/74.000 100.00 20.00 ESI+
    L-Pro C5H9NO2 1.35 116.070/70.020 68.00 10.00 ESI+
    2'-Deoxycyt C9H13N3O4 1.45 228.200/112.053 76.00 13.00 ESI+
    Cyt C9H13N3O5 1.85 244.090/112.000 61.00 10.00 ESI+
    L-Met C5H11NO2S 2.02 150.060/104.030 91.00 10.00 ESI+
    Uri C10H13N5O5 2.51 244.896/113.000 10.00 13.00 ESI+
    L-Isoleu C6H13NO 3.01 132.100/86.050 100.00 10.00 ESI+
    L-Leu C6H13NO2 3.31 132.100/86.050 100.00 10.00 ESI+
    Ade C10H13N5O4 3.34 268.100/136.070 86.00 23.00 ESI+
    Gua C10H13N5O5 3.89 284.300/152.000 62.00 15.00 ESI+
    Ino C10H12N4O5 3.95 269.000/137.070 46.00 15.00 ESI+
    2'-Deoxygua C10H13N5O4 4.42 268.100/152.100 61.00 15.00 ESI+
    L-Phe C9H11NO2 6.45 166.100/120.050 100.00 14.00 ESI+
    Thy C10H14N2O5 6.59 243.100/127.070 61.00 13.00 ESI+
    N-R1 C47H80O18 9.01 932.412/638.300 -225.00 -50.00 ESI-
    G-Rg1 C42H72O14 9.66 845.680/637.400 -20.00 -35.00 ESI-
    G-Re C48H82O18 9.68 991.700/799.400 -120.00 -45.00 ESI-
    G-Rb1 C54H92O23 10.50 1109.600/352.00 111.00 31.00 ESI+
    G-Rc C53H90O22 10.70 1077.600/1077.600 -120.00 -60.00 ESI-
    G-Rb2 C53H90O22 10.80 1077.600/1077.600 -120.00 -60.00 ESI-
    P-F11 C42H72O14 10.90 845.400/653.400 -110.00 -50.00 ESI-
    G-Ro C48H76O19 11.00 955.585/793.400 -5.00 -60.00 ESI-
    N-R2(20S) C41H70O13 11.10 769.427/637.400 -25.00 -38.00 ESI-
    G-Rg2(20S) C42H72O13 11.30 829.600/637.400 -20.00 -40.00 ESI-
    P-RT1 C47H74O18 11.40 949.380/641.300 261.00 55.00 ESI+
    C-Ⅳ C47H74O18 11.40 926.000/569.300 -15.00 -60.00 ESI-
    G-Rd C48H82O18 11.50 991.700/783.400 -120.00 -55.00 ESI-
    C-Ⅳa C42H66O14 11.90 793.530/631.200 -185.00 -58.00 ESI-
    下载: 导出CSV

    表  3  33种成分的回归方程、相关系数、检测限和定量限

    Table  3.   Linear regression equations, correlation coefficients, limits of detection and limits of quantification of 33 compounds

    化合物 标准曲线 r 线性范围/(ng·mL-1) LOD/(ng·mL-1) LOQ/(ng·mL-1)
    L-His Y=128X+1.74×103 0.999 6 4.5~900 0.27 0.81
    L-Arg Y=44.2X+1.08×104 0.999 4 21~3.36×105 2.08 6.25
    L-Ser Y=2.32X+2.54×103 0.999 1 1.4~5.6×104 0.33 0.99
    L-Ala Y=2.57X+553 0.999 7 32.7~1.044×105 3.76 11.28
    L-Asp Y=206X+1.44×104 0.999 7 8.5~1.36×104 1.07 3.22
    L-Thr Y=5.39X+537 0.999 3 0.67~2.7×104 0.13 0.39
    L-Pro Y=142X+1.14×105 0.999 6 12.8~2.56×105 3.39 10.16
    2’-Deoxycyt Y=393X-946 0.999 7 1.5~300 0.25 0.75
    Cyt Y=209X+274 0.999 7 0.85~6.78×103 0.25 0.75
    L-Met Y=72X+697 0.999 2 0.75~2.4×103 0.15 0.45
    Uri Y=1 740X-4.83×104 0.999 7 29.9~5.98×103 1.50 4.50
    L-Isoleu Y=188X+2.27×104 0.999 4 2.33~1.862×104 0.23 0.69
    L-Leu Y=79.5X+3.33×104 0.999 3 25.6~4.08×104 5.12 15.36
    Ade Y=3 950X+4.11×104 0.999 6 1.56~1.248×104 0.17 0.51
    Gua Y=359X+2.28×105 0.999 3 12.8~1.28×105 2.02 6.06
    Ino Y=4 650X+1.12×105 0.999 7 12.4~4.97×103 2.48 7.44
    2’-Deoxygua Y=3 950X-2.88×105 0.999 7 1.5~300 0.15 0.45
    L-Phe Y=124X+891 0.999 4 0.65~2.58×104 0.13 0.39
    Thy Y=178X-403 0.999 4 4.12~1.65×103 0.82 2.46
    N-R1 Y=8.96X+222 0.999 6 12.7~1.014×104 2.54 7.62
    G-Rg1 Y=54.2X+1.15×104 0.999 3 7.23~2.312×105 1.45 4.35
    G-Re Y=3.85X+3.17×103 0.999 4 33.3~5.32×105 6.65 19.95
    G-Rb1 Y=54.3X+3.95×103 0.999 9 12.5~1.002×105 2.51 7.53
    G-Rc Y=27.5X-280 0.999 7 12.5~4.99×103 0.25 0.75
    G-Rb2 Y=6.32X+234 0.999 8 3.7~7.4×103 1.11 3.33
    P-F11 Y=140X+1.85×104 0.999 4 19.2~1.232×105 3.84 11.52
    G-Ro Y=15.4X+2.34×104 0.999 1 61.2~2.44×105 4.90 14.70
    N-R2(20S) Y=3.47X+1.1×103 0.999 5 6.78~2.71×104 1.36 4.08
    G-Rg2(20S) Y=202X+4.26×103 0.999 1 3.35~1.072×105 0.67 2.01
    P-RT1 Y=7.97X+1.29×104 0.999 1 31.2~1×106 6.24 18.72
    C-Ⅳ Y=16.9X+1.17×103 1.000 0 110~4.4×105 6.13 18.40
    G-Rd Y=15.6X+1.04×104 0.999 9 31.4~1.26×105 6.28 18.84
    C-Ⅳa Y=64.2X+8.91×104 0.999 3 8.29~3.32×105 0.81 2.43
    下载: 导出CSV

    表  4  竹节参根与根茎样品的主成分得分、综合得分(从低到高)

    Table  4.   Principal component scores, comprehensive evaluation in roots and rhizomes of Panax japonicus (from low to high)

    样品 主成分得分 综合得分
    PC1 PC2 PC3 PC4 PC5 PC6 PC7
    R7 -3.882 -1.972 -2.568 1.078 -0.883 -0.659 -1.074 -1.862
    RM7 -3.816 -3.094 -4.928 2.656 0.141 -0.615 0.542 -1.270
    RM13 -3.747 0.424 0.247 0.018 1.684 -1.276 -1.727 -0.878
    R13 -3.704 1.464 0.195 1.666 1.714 -1.561 1.112 -0.617
    R4 -3.175 -1.800 3.536 -0.227 -0.828 -0.098 -0.079 -0.390
    RM12 -2.849 4.628 0.799 0.918 -0.719 -0.309 -0.790 -0.326
    RM4 -2.832 -2.537 3.909 -0.709 1.274 1.215 -1.118 -0.281
    R6 -2.801 2.009 -1.471 0.068 -0.608 0.177 0.859 -0.249
    RM6 -1.877 5.367 -1.637 -0.160 2.075 2.606 0.991 -0.202
    RM3 -1.204 -1.815 2.460 -1.098 -0.019 -0.228 1.051 -0.160
    R10 -0.997 -1.434 3.092 -0.963 0.386 -0.818 -0.376 -0.121
    RM11 -0.725 2.147 -0.440 0.075 -1.082 -0.432 -0.609 -0.100
    R12 -0.535 3.189 0.209 -0.085 -2.694 0.499 0.111 -0.086
    RM8 -0.390 -1.127 0.417 -0.303 1.329 0.076 2.892 -0.068
    R8 0.190 -1.167 0.596 -1.302 -1.286 0.030 0.913 -0.054
    RM10 0.467 -0.661 0.840 -0.791 0.174 -0.164 0.500 -0.041
    RM5 0.857 -1.567 -1.814 -2.117 1.466 1.960 -1.808 -0.029
    R11 1.231 4.324 0.051 -0.574 -1.473 -0.387 -1.262 -0.023
    R3 1.676 -1.039 1.764 -1.103 -1.294 -0.217 0.674 -0.017
    R9 2.127 -1.508 -3.654 -3.485 1.143 -0.875 -0.387 -0.012
    R5 2.586 -1.014 -1.738 -3.293 -0.655 1.042 -0.384 -0.009
    R2 2.739 -2.012 -1.482 0.556 -2.042 0.766 0.978 -0.007
    RM2 3.247 -1.268 0.424 3.086 0.016 1.928 0.416 -0.004
    R1 4.016 -2.331 -0.969 1.897 -0.373 -1.730 -0.688 -0.002
    RM1 5.008 -0.710 1.485 4.579 0.794 1.224 -1.211 0.000
    RM9 8.391 3.504 0.677 -0.386 1.759 -2.154 0.472 0.000
    下载: 导出CSV
  • [1] ZHANG H, WANG HF, LIU Y, et al. The haematopoietic effect of Panax japonicus on blood deficiency model mice[J]. J Ethnopharmacol, 2014, 154(3): 818-824. doi: 10.1016/j.jep.2014.05.008
    [2] 国家药典委员会. 中华人民共和国药典: 一部[S]. 北京: 中国医药科技出版社, 2015.

    Chinese Pharmacopoeia Commission. Pharmacopoeia of the People's Republic of China: Ⅰ[S]. Beijing: China medical science and technology press, 2015.
    [3] 武秋爽, 陈平, 张庆文. 竹节参化学成分、药理活性及分析方法研究进展[J]. 亚太传统医药, 2016, 12(6): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YTCT201606021.htm

    WU QS, CHEN P, ZHANG QW. Advances in research of chemical constituents, pharmacological activities and analytical methods of Panax japonicus[J]. Asia Pac Tradit Med, 2016, 12(6): 46-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YTCT201606021.htm
    [4] 李有贵. 竹节人参皂苷对乙醇性肝损伤的保护机理研究[D]. 杭州: 浙江大学, 2011.

    LI YG. The mechanistic approach of saponins from Panax japonicus for treatment of alcohol-induced hepatic injury[D]. Hangzhou: Zhejiang University, 2011.
    [5] DUN YY, LIU M, CHEN J, et al. Regulatory effects of saponins from Panax japonicus on colonic epithelial tight junctions in aging rats[J]. J Ginseng Res, 2018, 42(1): 50-56. doi: 10.1016/j.jgr.2016.12.011
    [6] HE HB, XU J, XU YQ, et al. Cardioprotective effects of saponins from Panax japonicus on acute myocardial ischemia against oxidative stress-triggered damage and cardiac cell death in rats[J]. J Ethnopharmacol, 2012, 140(1): 73-82. doi: 10.1016/j.jep.2011.12.024
    [7] 张开强, 韦荣编, 宋茹, 等. 北太平洋鱿鱼(Todarodes pacificus)内脏自溶液总氨基酸组成质量评价和体外抗氧化性分析[J]. 食品科学, 2017, 38(1): 238-243. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201701046.htm

    ZHANG KQ, WEI RB, SONG R, et al. Assesment of total amino acids and antioxidant activity of squid(Todarodes pacificus) viscera autolysates[J]. Food Sci, 2017, 38(1): 238-243. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKX201701046.htm
    [8] 陈丽云, 祁真. 冬虫夏草氨基酸成分的药理作用分析[J]. 中国卫生工程学, 2018, 17(5): 675-677. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWX201805011.htm

    CHEN LY, QI Z. Analysis of amino acid composition and the pharmacology of cordyceps sinensis[J]. Chin J Public Health Eng, 2018, 17(5): 675-677. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGWX201805011.htm
    [9] 田晓芳, 王晓雪, 李朋梅, 等. 基于代谢组学的心肌缺血药理学研究进展[J]. 中国药学杂志, 2016, 51(20): 1726-1729. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYX201620002.htm

    TIAN XF, WANG XX, LI PM, et al. Pharmacological research progress of myocardial ischemia based on the metabonomics[J]. Chin Pharm J, 2016, 51(20): 1726-1729. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYX201620002.htm
    [10] 艾中, 钱正明, 李文佳, 等. 冬虫夏草核苷类成分分析研究进展[J]. 菌物学报, 2016, 35(4): 388-403. https://www.cnki.com.cn/Article/CJFDTOTAL-JWXT201604004.htm

    AI Z, QIAN ZM, LI WJ, et al. Recent advances in the analysis of nucleosides in Chinese cordyceps[J]. Mycosystema, 2016, 35(4): 388-403. https://www.cnki.com.cn/Article/CJFDTOTAL-JWXT201604004.htm
    [11] 丁兴杰, 熊亮, 周勤梅, 等. 天然核苷类成分的化学结构和药理活性研究进展[J]. 成都中医药大学学报, 2018, 41(2): 102-108. https://www.cnki.com.cn/Article/CJFDTOTAL-CDZY201802029.htm

    DING XJ, XIONG L, ZHOU QM, et al. Advances in studies on chemical structure and pharmacological activities of natural nucleosides[J]. J Chengdu Univ Tradit Chin Med, 2018, 41(2): 102-108. https://www.cnki.com.cn/Article/CJFDTOTAL-CDZY201802029.htm
    [12] 杨小舟, 崔铁军, 解莹, 等. 核苷类药物对恶性肿瘤患者化疗后乙型肝炎病毒再激活的研究[J]. 中华医院感染学杂志, 2016, 26(2): 289-291, 297. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHYY201602020.htm

    YANG XZ, CUI TJ, XIE Y, et al. Effect of nucleoside analogues on reactivation of hepatitis B virus in patients with malignancies after chemotherapy[J]. Chin J Nosocomiology, 2016, 26(2): 289-291, 297. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHYY201602020.htm
    [13] WU QS, WANG CM, LU JJ, et al. Simultaneous determination of six saponins in panacis japonici rhizoma using quantitative analysis of multi-components with single-marker method[J]. Curr Pharm Anal, 2017, 13(3): 289-295.
    [14] MENG FC, WU QS, WANG RB, et al. A novel strategy for quantitative analysis of major ginsenosides in panacis japonici rhizoma with a standardized reference fraction[J]. Molecules, 2017, 22(12): 2067.
    [15] 汪红, 王强. 非线性映射法用于鼠尾草属植物的分析鉴定[J]. 中国野生植物资源, 2006, 25(4): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYSZ200604014.htm

    WANG H, WANG Q. The application of nonlinear mapping in the identification of Salvia plants[J]. Chin Wild Plant Resour, 2006, 25(4): 51-54. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYSZ200604014.htm
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  124
  • HTML全文浏览量:  12
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-11
  • 网络出版日期:  2023-03-21
  • 发布日期:  2023-03-10

目录

    /

    返回文章
    返回