留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外泌体lncRNAs在结直肠癌中西医研究中的现状及思考

荣汶青 柴妮 朱惠蓉

荣汶青, 柴妮, 朱惠蓉. 外泌体lncRNAs在结直肠癌中西医研究中的现状及思考[J]. 南京中医药大学学报, 2023, 39(2): 194-200. doi: 10.14148/j.issn.1672-0482.2023.0194
引用本文: 荣汶青, 柴妮, 朱惠蓉. 外泌体lncRNAs在结直肠癌中西医研究中的现状及思考[J]. 南京中医药大学学报, 2023, 39(2): 194-200. doi: 10.14148/j.issn.1672-0482.2023.0194
RONG Wen-qing, CHAI Ni, ZHU Hui-rong. Research Status and Thinking of Exosomal lncRNAs Affecting the Occurrence and Development of Colorectal Cancer with Integrated Traditional Chinese and Western Medicine[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(2): 194-200. doi: 10.14148/j.issn.1672-0482.2023.0194
Citation: RONG Wen-qing, CHAI Ni, ZHU Hui-rong. Research Status and Thinking of Exosomal lncRNAs Affecting the Occurrence and Development of Colorectal Cancer with Integrated Traditional Chinese and Western Medicine[J]. Journal of Nanjing University of traditional Chinese Medicine, 2023, 39(2): 194-200. doi: 10.14148/j.issn.1672-0482.2023.0194

外泌体lncRNAs在结直肠癌中西医研究中的现状及思考

doi: 10.14148/j.issn.1672-0482.2023.0194
基金项目: 

上海市科学技术委员会项目 21010504300

上海市卫生健康委员会项目 20204Y0401

详细信息
    作者简介:

    荣汶青, 女, 博士研究生, E-mail: quintina_rong@126.com

    通讯作者:

    朱惠蓉, 女, 研究员, 博士生导师, 主要从事中医药防治恶性肿瘤研究,E-mail: zhu_huirong@126.com

  • 中图分类号: R285.5

Research Status and Thinking of Exosomal lncRNAs Affecting the Occurrence and Development of Colorectal Cancer with Integrated Traditional Chinese and Western Medicine

  • 摘要: 外泌体lncRNAs在结直肠癌发生发展中发挥着重要作用, 可通过诱导免疫逃逸、驱动上皮间充质转化、增加化疗及靶向治疗抗性、促进血管新生等影响结直肠癌的进程。古今医家认为结直肠癌基本病机为本虚标实, 本虚为正气亏虚, 标实为痰、湿、热、毒、瘀等病理因素交互为患, 外泌体lncRNAs通过多种途径影响结直肠癌的发生发展, 与中医学对结直肠癌“正虚邪实”病机的认识高度契合。通过梳理近年来外泌体lncRNAs在结直肠癌发生发展中的作用机制及中医药干预研究, 为未来中西医结合防治结直肠癌发生发展研究提供思路。

     

  • 表  1  外泌体lncRNAs作为诊断和预后标志物潜力

    Table  1.   Potential of lncRNAs in exocrine as diagnostic and prognostic markers

    外泌体lncRNA 表达 与临床病理关系 AUC 文献
    FOXD2-AS1, NRIR, XLOC_009459 - 0.736 [4]
    ADAMTS9-AS1 - 0.835 [15]
    AF079515, CCAT1, UCA1, RP11-434B12.1, HOTTIP 无复发生存期 0.947 [5]
    UCA1 肿瘤大小, 肿瘤分期, 转移 - [27]
    CCAT2 TNM分期, 淋巴转移 - [6]
    RPPH1 TNM分期, 转移, 较差的总生存期和无病生存期 0.856 [11]
    LINC02418 - 0.898 [26]
    HOTTIP 淋巴转移, 低总生存期 0.750 [28]
    LNCV6_116109
    LNCV6_98390
    LNCV6_38772
    LNCV_108266
    LNCV6_84003
    LNCV6_98602





    -
    -
    -
    -
    -
    -
    0.8052
    0.7088
    0.7460
    0.7292
    0.7356
    0.6800
    [7]
    下载: 导出CSV

    表  2  中医药通过lncRNAs防治结直肠癌的作用机制

    Table  2.   The mechanism of prevention and treatment of colorectal cancer by traditional Chinese medicine through lncRNAs

    复方/中药单体 功效 作用机制 Ref
    大黄虫丸 扶正祛邪, 祛瘀生新 下调lncRNA CCL2, 改善EMT, 抑制转移 [29]
    姜黄素(姜黄提取物) 破血行气, 通经止痛 上调lncRNA NBR2, 抑制增殖
    下调lncRNA PANDAR, 促进凋亡
    调lncRNA KCNQ1OT1, 逆转耐药
    [30]
    [31]
    [32]
    人参皂苷Rg3(人参提取物) 大补元气, 补脾益肺 下调lncRNA CCAT1, 抑制增殖 [33]
    染料木素(槐角提取物) 清热泻火, 凉血止血 抑制lncRNA TTTY18/Akt通路, 促进凋亡, 减少迁移 [34]
    重楼皂苷ⅤⅡ(重楼提取物) 清热解毒, 消肿止痛 改变lncRNA, 促进凋亡, 抑制侵袭 [35]
    白蔹素(白蔹提取物) 清热解毒, 消痈散结 调节lncRNA ZFPM2-AS1/miR-515-5p通路, 抑制迁移和侵袭 [36]
    黄连素(黄连提取物) 清热燥湿, 泻火解毒 上调LncRNA CASC2, 促进凋亡 [37]
    EGb761(银杏叶提取物) 活血化瘀 上调lncRNA-P21, 抑制侵袭和转移 [38]
    三七总皂苷(三七提取物) 散瘀止血, 消肿定痛 上调lncRNA SNHG6, 增强放疗敏感性 [39]
    健脾消癌方 健脾益气, 化瘀解毒 下调lncRNA-ATB, 抑制转移
    抑制lncRNA HOTAIR/JAK2/STAT3通路, 抑制转移
    [40]
    [41]
    清解扶正颗粒 清热解毒, 益气健脾 下调lncRNA ANRIL, 上调let-7a, 抑制生长和转移 [42]
    健脾复方提取物 健脾益气, 解毒散结 下调lncRNA MALAT1, 抑制迁移和生长 [43]
    下载: 导出CSV
  • [1] SUNG H, FERLAY J, SIEGEL RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. doi: 10.3322/caac.21660
    [2] MA YL, YANG YZ, WANG F, et al. Long non-coding RNA CCAL regulates colorectal cancer progression by activating Wnt/β-catenin signalling pathway via suppression of activator protein 2α[J]. Gut, 2016, 65(9): 1494-1504. doi: 10.1136/gutjnl-2014-308392
    [3] NG CT, AZWAR S, YIP WK, et al. Isolation and identification of long non-coding RNAs in exosomes derived from the serum of colorectal carcinoma patients[J]. Biology, 2021, 10(9): 918. doi: 10.3390/biology10090918
    [4] YU M, SONG XG, ZHAO YJ, et al. Circulating serum exosomal long non-coding RNAs FOXD2-AS1, NRIR, and XLOC009459 as diagnostic biomarkers for colorectal cancer[J]. Front Oncol, 2021, 11: 618967. doi: 10.3389/fonc.2021.618967
    [5] ZHANG YL, LIU H, LIU XF, et al. Identification of an exosomal long non-coding RNAs panel for predicting recurrence risk in patients with colorectal cancer[J]. Aging, 2020, 12(7): 6067-6088. doi: 10.18632/aging.103006
    [6] WANG LL, DUAN WL, YAN SZ, et al. Circulating long non-coding RNA colon cancer-associated transcript 2 protected by exosome as a potential biomarker for colorectal cancer[J]. Biomed Pharmacother, 2019, 113: 108758. doi: 10.1016/j.biopha.2019.108758
    [7] HU DZ, ZHAN Y, ZHU KG, et al. Plasma exosomal long non-coding RNAs serve as biomarkers for early detection of colorectal cancer[J]. Cell Physiol Biochem, 2018, 51(6): 2704-2715. doi: 10.1159/000495961
    [8] HUANG YW, LUO YB, OU WT, et al. Exosomal lncRNA SNHG10 derived from colorectal cancer cells suppresses natural killer cell cytotoxicity by upregulating INHBC[J]. Cancer Cell Int, 2021, 21(1): 528. doi: 10.1186/s12935-021-02221-2
    [9] XIAN D, NIU LB, ZENG J, et al. LncRNA KCNQ1OT1 secreted by tumor cell-derived exosomes mediates immune escape in colorectal cancer by regulating PD-L1 ubiquitination via miR-30a-5p/USP22[J]. Front Cell Dev Biol, 2021, 9: 653808. doi: 10.3389/fcell.2021.653808
    [10] SUN JF, JIA HW, BAO XQ, et al. Tumor exosome promotes Th17 cell differentiation by transmitting the lncRNA CRNDE-h in colorectal cancer[J]. Cell Death Dis, 2021, 12(1): 123. doi: 10.1038/s41419-020-03376-y
    [11] LIANG ZX, LIU HS, WANG FW, et al. LncRNA RPPH1 promotes colorectal cancer metastasis by interacting with TUBB3 and by promoting exosomes-mediated macrophage M2 polarization[J]. Cell Death Dis, 2019, 10(11): 829. doi: 10.1038/s41419-019-2077-0
    [12] XU JC, XIAO Y, LIU B, et al. Exosomal MALAT1 sponges miR-26a/26b to promote the invasion and metastasis of colorectal cancer via FUT4 enhanced fucosylation and PI3K/Akt pathway[J]. J Exp Clin Cancer Res, 2020, 39(1): 54. doi: 10.1186/s13046-020-01562-6
    [13] LUAN YP, LI X, LUAN YQ, et al. Circulating lncRNA UCA1 promotes malignancy of colorectal cancer via the miR-143/MYO6 axis[J]. Mol Ther Nucleic Acids, 2020, 19: 790-803. doi: 10.1016/j.omtn.2019.12.009
    [14] LIU L, MENG T, YANG XH, et al. Prognostic and predictive value of long non-coding RNA GAS5 and mircoRNA-221 in colorectal cancer and their effects on colorectal cancer cell proliferation, migration and invasion[J]. Cancer Biomark, 2018, 22(2): 283-299. doi: 10.3233/CBM-171011
    [15] LI N, LI J, MI Q, et al. Long non-coding RNA ADAMTS9-AS1 suppresses colorectal cancer by inhibiting the Wnt/β-catenin signalling pathway and is a potential diagnostic biomarker[J]. J Cell Mol Med, 2020, 24(19): 11318-11329. doi: 10.1111/jcmm.15713
    [16] YIN H, HU JJ, YE ZY, et al. Serum long non-coding RNA NNT-AS1 protected by exosome is a potential biomarker and functions as an oncogene via the miR-496/RAP2C axis in colorectal cancer[J]. Mol Med Rep, 2021, 24(2): 585. doi: 10.3892/mmr.2021.12224
    [17] CHEN XJ, LIU YQ, ZHANG QL, et al. Exosomal long non-coding RNA HOTTIP increases resistance of colorectal cancer cells to mitomycin via impairing miR-214-mediated degradation of KPNA3[J]. Front Cell Dev Biol, 2020, 8: 582723.
    [18] SUN FF, LIANG WW, QIAN J. The identification of CRNDE, H19, UCA1 and HOTAIR as the key lncRNAs involved in oxaliplatin or irinotecan resistance in the chemotherapy of colorectal cancer based on integrative bioinformatics analysis[J]. Mol Med Rep, 2019, 20(4): 3583-3596.
    [19] DENG X, RUAN HY, ZHANG XJ, et al. Long noncoding RNA CCAL transferred from fibroblasts by exosomes promotes chemoresistance of colorectal cancer cells[J]. Int J Cancer, 2020, 146(6): 1700-1716. doi: 10.1002/ijc.32608
    [20] REN J, DING L, ZHANG DY, et al. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19[J]. Theranostics, 2018, 8(14): 3932-3948. doi: 10.7150/thno.25541
    [21] YANG YN, ZHANG R, DU JW, et al. Predictive role of UCA1-containing exosomes in cetuximab-resistant colorectal cancer[J]. Cancer Cell Int, 2018, 18: 164. doi: 10.1186/s12935-018-0660-6
    [22] WANG FW, CAO CH, HAN K, et al. APC-activated long noncoding RNA inhibits colorectal carcinoma pathogenesis through reduction of exosome production[J]. J Clin Invest, 2019, 129(2): 727-743. doi: 10.1172/JCI122478
    [23] THIERY JP, ACLOQUE H, HUANG RYJ, et al. Epithelial-mesenchymal transitions in development and disease[J]. Cell, 2009, 139(5): 871-890. doi: 10.1016/j.cell.2009.11.007
    [24] ZHANG N, NG AS, CAI SJ, et al. Novel therapeutic strategies: Targeting epithelial-mesenchymal transition in colorectal cancer[J]. Lancet Oncol, 2021, 22(8): e358-e368. doi: 10.1016/S1470-2045(21)00343-0
    [25] ZHOU L, LI J, TANG YP, et al. Exosomal LncRNA LINC00659 transferred from cancer-associated fibroblasts promotes colorectal cancer cell progression via miR-342-3p/ANXA2 axis[J]. J Transl Med, 2021, 19(1): 8. doi: 10.1186/s12967-020-02648-7
    [26] ZHAO YH, DU TT, DU LT, et al. Long noncoding RNA LINC02418 regulates MELK expression by acting as a ceRNA and may serve as a diagnostic marker for colorectal cancer[J]. Cell Death Dis, 2019, 10(8): 568. doi: 10.1038/s41419-019-1804-x
    [27] BARBAGALLO C, BREX D, CAPONNETTO A, et al. LncRNA UCA1, upregulated in CRC biopsies and downregulated in serum exosomes, controls mRNA expression by RNA-RNA interactions[J]. Mol Ther Nucleic Acids, 2018, 12: 229-241. doi: 10.1016/j.omtn.2018.05.009
    [28] OEHME F, KRAHL S, GYORFFY B, et al. Low level of exosomal long non-coding RNA HOTTIP is a prognostic biomarker in colorectal cancer[J]. RNA Biol, 2019, 16(10): 1339-1345. doi: 10.1080/15476286.2019.1637697
    [29] CHEN CH, YAO XQ, XU YH, et al. Dahuang Zhechong Pill suppresses colorectal cancer liver metastasis via ameliorating exosomal CCL2 primed pre-metastatic niche[J]. J Ethnopharmacol, 2019, 238: 111878. doi: 10.1016/j.jep.2019.111878
    [30] YU H, XIE YY, ZHOU ZD, et al. Curcumin regulates the progression of colorectal cancer via LncRNA NBR2/AMPK pathway[J]. Technol Cancer Res Treat, 2019, 18: 1533033819870781. http://www.socolar.com/Article/Index?aid=200253269516&jid=200000079509
    [31] CHEN T, YANG P, WANG H, et al. Silence of long noncoding RNA PANDAR switches low-dose curcumin-induced senescence to apoptosis in colorectal cancer cells[J]. Onco Targets Ther, 2017, 10: 483-491. doi: 10.2147/OTT.S127547
    [32] ZHENG ZH, YOU HY, FENG YJ, et al. LncRNA KCNQ1OT1 is a key factor in the reversal effect of curcumin on cisplatin resistance in the colorectal cancer cells[J]. Mol Cell Biochem, 2021, 476(7): 2575-2585. doi: 10.1007/s11010-020-03856-x
    [33] LI JL, QI YX. Ginsenoside Rg3 inhibits cell growth, migration and invasion in Caco-2 cells by downregulation of lncRNA CCAT1[J]. Exp Mol Pathol, 2019, 106: 131-138. doi: 10.1016/j.yexmp.2019.01.003
    [34] CHEN XY, WU YJ, GU JZ, et al. Anti-invasive effect and pharmacological mechanism of genistein against colorectal cancer[J]. Biofactors, 2020, 46(4): 620-628. doi: 10.1002/biof.1627
    [35] SONG C, PAN B, YANG X, et al. Polyphyllin VⅡ suppresses cell proliferation, the cell cycle and cell migration in colorectal cancer[J]. Oncol Lett, 2021, 21(1): 25.
    [36] YUAN S, YU DZ. Mechanism of ampelopsin inhibiting proliferation, remove and incursion of colorectal cancer through regulating the expression of LncRNA ZFPM2-AS1/miR-515-5p[J]. J Biomater Tissue Eng, 2021, 11(6): 1029-1036. doi: 10.1166/jbt.2021.2406
    [37] DAI W, MU LY, CUI YL, et al. Berberine promotes apoptosis of colorectal cancer via regulation of the long non-coding RNA (lncRNA) cancer susceptibility candidate 2 (CASC2)/AU-binding factor 1 (AUF1)/B-cell CLL/lymphoma 2 (bcl-2) axis[J]. Med Sci Monit, 2019, 25: 730-738. doi: 10.12659/MSM.912082
    [38] CHANG LQ, LIU TT, CHAI ZQ, et al. lincRNA-p21 mediates the anti-cancer effect of Ginkgo biloba extract EGb 761 by stabilizing E-cadherin protein in colon cancer[J]. Med Sci Monit, 2018, 24: 9488-9496. doi: 10.12659/MSM.911924
    [39] XU CH, LIU T, LIU HY, et al. Panax notoginseng saponins radiosensitize colorectal cancer cells by regulating the SNHG6/miR-137 axis[J]. RSC Adv, 2019, 9(66): 38558-38567. doi: 10.1039/C9RA07622K
    [40] 罗吉, 罗燕, 李勇敏, 等. 健脾消癌方对结肠癌TGF-β/lncRNA-ATB/miR-200a信号通路的影响[J]. 中国实验方剂学杂志, 2018, 24(6): 161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201806028.htm

    LUO J, LUO Y, LI YM, et al. Effect of Jianpi xiaoai prescription on TGF-β/lncRNA-ATB/miR-200a signal pathway in colorectal cancer[J]. Chin J Exp Tradit Med Formulae, 2018, 24(6): 161-166. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201806028.htm
    [41] 焦蕉, 唐麒, 蒋益兰, 等. 健脾消癌方通过lncRNA HOTAIR/JAK2/STAT3信号通路抑制结肠癌细胞株HCT116转移的机制[J]. 中国实验方剂学杂志, 2021, 27(23): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202123010.htm

    JIAO J, TANG Q, JIANG YL, et al. Efficacy of Jianpi xiaoai prescription in inhibition of metastasis of colon cancer HCT116Cells: An exploration based on LncRNA HOTAIR/JAK2/STAT3 signaling pathway[J]. Chin J Exp Tradit Med Formulae, 2021, 27(23): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX202123010.htm
    [42] ZHANG L, LIU JX, LIN S, et al. Qingjie fuzheng granule inhibited the migration and invasion of colorectal cancer cells by regulating the lncRNA ANRIL/let-7a/TGF-β 1/smad axis[J]. Evid Based Complement Alternat Med, 2020, 2020: 5264651.
    [43] LU XY, WU XL, JING L, et al. Network pharmacology analysis and experiments validation of the inhibitory effect of JianPi fu recipe on colorectal cancer LoVo cells metastasis and growth[J]. Evid Based Complementary Altern Med, 2020, 2020: 4517483.
    [45] 李维忠, 程海波. 基于癌毒病机理论的结直肠腺瘤分期辨治[J]. 中华中医药杂志, 2021, 36(6): 3373-3376. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202106069.htm

    LI WZ, CHENG HB. Differentiation and treatment of colorectal adenoma by stages based on the theory of cancer toxin pathogenesis[J]. China J Tradit Chin Med Pharm, 2021, 36(6): 3373-3376. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202106069.htm
    [46] 王俊壹, 程海波, 周仲瑛. 结直肠癌前病变的中医理论探析[J]. 中医杂志, 2018, 59(21): 1819-1823. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ201821006.htm

    WANG JY, CHENG HB, ZHOU ZY. Traditional Chinese medicine theory analysis of precancerous lesions of colorectal cancer[J]. J Tradit Chin Med, 2018, 59(21): 1819-1823. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ201821006.htm
    [47] 宁博彪, 刘佳佳, 刘泽静, 等. 王晞星治疗大肠癌临证经验[J]. 中华中医药杂志, 2020, 35(11): 5579-5581. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202011063.htm

    NING BB, LIU JJ, LIU ZJ, et al. WANG Xi-Xing's clinical experience in treating colorectal cancer[J]. China J Tradit Chin Med Pharm, 2020, 35(11): 5579-5581. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202011063.htm
    [48] 张钦畅, 程海波. 基于转移前微环境探讨结直肠癌核心病机生物学基础[J]. 中华中医药杂志, 2021, 36(8): 4519-4522. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202108026.htm

    ZHANG QC, CHENG HB. Discussion on the biological basis of the core pathogenesis of colorectal cancer based on pre-metastasis niches[J]. China J Tradit Chin Med Pharm, 2021, 36(8): 4519-4522. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY202108026.htm
    [49] 唐振豪, 兰聪颖, 林丽珠. 从肿瘤免疫编辑假说探讨肿瘤"正虚邪实"及其治疗[J]. 中医杂志, 2019, 60(13): 1113-1117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ201913008.htm

    TANG ZH, LAN CY, LIN LZ. On "deficient vital qi and excess pathogenic qi" of cancer and its treatment based on cancer immunoediting hypothesis[J]. J Tradit Chin Med, 2019, 60(13): 1113-1117. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ201913008.htm
    [50] 陶智怡, 王金平, 陆烨, 等. 益气温阳方联合化疗对结直肠癌晚期患者外周血Treg细胞影响研究[J]. 中外医疗, 2019, 38(12): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HZZZ201912001.htm

    TAO ZY, WANG JP, LU Y, et al. Effect of Yiqi Wenyang Decoction recipe combined with chemotherapy on treg cells in peripheral blood of patients with advanced colorectal cancer[J]. China Foreign Med Treat, 2019, 38(12): 1-4. https://www.cnki.com.cn/Article/CJFDTOTAL-HZZZ201912001.htm
    [51] 冯媛媛, 周利红, 李琦. 健脾法治疗大肠癌的进展及研究现状[J]. 中华中医药杂志, 2015, 30(11): 4013-4015. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY201511062.htm

    FENG YY, ZHOU LH, LI Q. Research status and progress of strengthening spleen therapy in treatment of colorectal cancer[J]. China J Tradit Chin Med Pharm, 2015, 30(11): 4013-4015. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY201511062.htm
    [52] 杨彦, 杨羚. 基于"毒-虚-瘀"探讨肿瘤血管生成的中医机制[J]. 成都中医药大学学报, 2017, 40(3): 115-116. https://www.cnki.com.cn/Article/CJFDTOTAL-CDZY201703035.htm

    YANG Y, YANG L. Explore the mechanism of traditional Chinese medicine of growth of tumor angiogenesis based on theory of "cancer toxin-deficiency-stasis"[J]. J Chengdu Univ Tradit Chin Med, 2017, 40(3): 115-116. https://www.cnki.com.cn/Article/CJFDTOTAL-CDZY201703035.htm
    [53] 王曦妤, 吴行, 石齐, 等. 从癌毒理论探讨解毒类中药在晚期结直肠癌中的应用概述[J]. 山东中医杂志, 2022, 41(2): 224-232. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZY202202019.htm

    WANG XY, WU X, SHI Q, et al. Application of detoxifying traditional Chinese medicine in advanced colorectal cancer based on theory of cancer toxin[J]. Shandong J Tradit Chin Med, 2022, 41(2): 224-232. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZY202202019.htm
  • 加载中
表(2)
计量
  • 文章访问数:  166
  • HTML全文浏览量:  52
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-18
  • 网络出版日期:  2023-02-17
  • 发布日期:  2023-02-10

目录

    /

    返回文章
    返回