留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

滋肾泻青汤对ADHD模型大鼠前额叶多巴胺受体脱敏-复敏信号通路的影响

孙继超 张碧霞 李伟伟

孙继超, 张碧霞, 李伟伟. 滋肾泻青汤对ADHD模型大鼠前额叶多巴胺受体脱敏-复敏信号通路的影响[J]. 南京中医药大学学报, 2022, 38(12): 1137-1142. doi: 10.14148/j.issn.1672-0482.2022.1137
引用本文: 孙继超, 张碧霞, 李伟伟. 滋肾泻青汤对ADHD模型大鼠前额叶多巴胺受体脱敏-复敏信号通路的影响[J]. 南京中医药大学学报, 2022, 38(12): 1137-1142. doi: 10.14148/j.issn.1672-0482.2022.1137
SUN Jichao, ZHANG Bixia, LI Weiwei. Effects of Zishen Xieqing Tang on Dopamine Signaling Pathway of Desensitization/Resensitization in Attention Deficit Hyperactivity Disorder Rats' Prefrontal Cortex[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(12): 1137-1142. doi: 10.14148/j.issn.1672-0482.2022.1137
Citation: SUN Jichao, ZHANG Bixia, LI Weiwei. Effects of Zishen Xieqing Tang on Dopamine Signaling Pathway of Desensitization/Resensitization in Attention Deficit Hyperactivity Disorder Rats' Prefrontal Cortex[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(12): 1137-1142. doi: 10.14148/j.issn.1672-0482.2022.1137

滋肾泻青汤对ADHD模型大鼠前额叶多巴胺受体脱敏-复敏信号通路的影响

doi: 10.14148/j.issn.1672-0482.2022.1137
基金项目: 

国家自然科学基金青年科学基金项目 81804146

国家自然科学基金地区科学基金项目 82260953

广西自然科学基金青年基金项目 2017JJB140344y

广西自然科学基金面上项目 2020JJA140275

广西高校中青年教师基础能力提升项目 2018KY0281

广西中医药大学引进博士科研启动基金项目 2017BS046

详细信息
    作者简介:

    孙继超, 男, 主治医师, E-mail: sunjichao881177@163.com

    通讯作者:

    李伟伟, 男,主任中医师, 博士生导师, 主要从事中医儿科相关疾病的研究, E-mail: 13878161612@163.com

  • 中图分类号: R285.5

Effects of Zishen Xieqing Tang on Dopamine Signaling Pathway of Desensitization/Resensitization in Attention Deficit Hyperactivity Disorder Rats' Prefrontal Cortex

  • 摘要:   目的  探讨中药方滋肾泻青汤对注意缺陷多动障碍模型大鼠(Spontaneously hypertensive rat, SHR)行为学表现及前额叶多巴胺受体脱敏-复敏信号通路的影响。  方法  50只SHR大鼠随机分为模型组、利他林组(2 mg·kg-1)、滋肾泻青汤低剂量组、中剂量组、高剂量组(6.0、12.1、24.1 g·kg-1), 每组10只, 另设Wistar京都大鼠(Wistar Kyoto rat, WKY)为正常对照组。每日灌胃2次, 在此期间进行相应的行为学检测, 治疗4周后取大鼠前额叶组织。分别用Western blot及qPCR检测各组大鼠前额叶组织中GRK-6、β-arrestin2、NCS-1、PP2A及PSD-95等蛋白和mRNA表达水平。  结果  利他林及滋肾泻青汤能改善SHR大鼠的行为学表现。与正常组相比, 模型组大鼠前额叶中β-arrestin2、NCS-1、PP2A、PSD-95蛋白和mRNA表达水平有下调趋势或显著下调(P < 0.05), 而GRK-6的表达水平上调(P < 0.05);经治疗后, 与模型组相比, 利他林组、滋肾泻青汤各剂量组前额叶中β-arrestin2、NCS-1、PSD-95、PP2A蛋白和mRNA表达水平有上调趋势或明显上调(P < 0.05), 而GRK-6的表达水平明显降低(P < 0.05)。  结论  利他林及滋肾泻青汤能增加模型大鼠前额叶多巴胺受体的活性, 多巴胺受体脱敏-复敏信号通路可能是滋肾泻青汤治疗ADHD的潜在途径之一。

     

  • 图  1  滋肾泻青汤方对各组大鼠前额叶多巴胺受体信号通路中β-arrestin2、PSD-95、NCS-1、GRK-6、PP2A蛋白表达的影响

    注: WKY+DDW.正常对照组; SHR+DDW.模型组; SHR+MPH. 利他林组; SHR+ZXT-L、M、H.滋肾泻青汤低、中、高剂量组。与WKY+DDW组比较, *P < 0.05;与SHR+DDW组比较, #P < 0.05。x±s, n=6。

    Figure  1.  The regulatory effects of Zishen Xieqing Tang on dopamine receptor signaling pathway related proteinβ-arrestin2, PSD-95, NCS-1, GRK-6, PP2A in rats' prefrontal cortex

    图  2  滋肾泻青汤方对各组大鼠前额叶多巴胺受体信号通路中β-arrestin2、PSD-95、NCS-1、GRK-6、PP2A mRNA表达的影响

    注: WKY+DDW.正常对照组; SHR+DDW.模型组; SHR+MPH.利他林组; SHR+ZXT-L、M、H.滋肾泻青汤低、中、高剂量组。与正常组比较, *P < 0.05;与模型组比较, #P < 0.05。x±s=6。

    Figure  2.  The regulatory effects of Zishen Xieqing Tang on dopamine receptor signaling pathway related mRNA expression in rats' prefrontal cortex

    表  1  引物序列

    Table  1.   Primer sequences

    基因 引物序列(5'→3') 产物长度/bp
    GAPDH Forward: GACATGCCGCCTGGAGAAAC 92
    Reverse: AGCCCAGGATGCCCTTTAGT
    GRK-6 Forward: CAGTCCAGATGAGCAAGCAG 103
    Reverse: CACAACAGACAGGCACGAGT
    β-arrestin2 Forward: AGGGCAGTGGGATACAGGT 108
    Reverse: AGGGCAAACAAAGCAAACAG
    NCS-1 Forward: GCTGTGATGTGTGGGAACC 101
    Reverse: GCTTTGTGGAGACGAGGAAG
    PSD-95 Forward: CACTGACAACCCGCACATC 136
    Reverse: CTCCCGAACATCCACTTCAT
    PP2A Forward: TTACCGAGAGCGTATCACCA 171
    Reverse: ATCTGCCCATCCACCAAG
    下载: 导出CSV

    表  2  滋肾泻青汤对SHR大鼠开场实验活动距离的影响(x±s, m, n=10)

    Table  2.   The effects of Zishen Xieqing Tang on the SHR rats' moving distances in open field test (x±s, m, n=10)

    组别 给药前 给药2周 给药4周
    正常组 11.14±1.83 13.21±2.02 11.96±1.68
    模型组 31.11±3.31** 33.81±2.63** 33.14±3.57**
    利他林组 30.68±3.11** 28.32±3.49**# 23.09±2.63**##
    滋肾泻青汤低剂量组 29.59±3.73** 27.64±2.51**# 24.48±1.73**##
    滋肾泻青汤中剂量组 33.58±1.89** 24.37±1.58**## 25.63±1.73**##
    滋肾泻青汤高剂量组 31.74±3.26** 26.93±2.30**## 24.38±2.15**##
    注: 与正常组比较, * *P < 0.01;与模型组比较, #P < 0.05, ##P < 0.01。
    下载: 导出CSV

    表  3  滋肾泻青汤对SHR大鼠水迷宫隐蔽站台实验潜伏期的影响(x±s, s, n=10)

    Table  3.   The effects of Zishen Xieqing Tang on the SHR rats' escape latency in Morris water maze test(x±s, s, n=10)

    组别 第1天 第2天 第3天 第4天 第5天
    正常组 81.22±7.51 83.72±7.25 79.56±9.32 81.24±6.96 83.65±8.14
    模型组 70.33±6.57** 66.35±8.24** 55.32±4.97** 46.84±3.75** 32.05±5.63**
    利他林组 71.24±7.25** 62.35±4.56** 50.36±5.83** 39.52±4.35**# 20.31±3.52**##
    滋肾泻青汤低剂量组 73.64±6.35** 67.56±7.52** 51.36±6.21** 33.65±5.46**## 25.52±3.24**##
    滋肾泻青汤中剂量组 69.65±6.53** 60.67±5.54**# 53.25±3.54** 41.36±4.13** 23.25±4.68**##
    滋肾泻青汤高剂量组 72.34±8.63** 62.36±5.63** 49.36±4.25**# 36.65±5.72**## 21.35±4.61**##
    注: 与正常组比较, * *P < 0.01;与模型组比较, #P < 0.05, ##P < 0.01。
    下载: 导出CSV
  • [1] POLANCZYK GV, WILLCUTT EG, SALUM GA, et al. ADHD prevalence estimates across three decades: An updated systematic review and meta-regression analysis[J]. Int J Epidemiol, 2014, 43(2): 434-442. doi: 10.1093/ije/dyt261
    [2] SWANSON JM, KINSBOURNE M, NIGG J, et al. Etiologic subtypes of attention-deficit/hyperactivity disorder: Brain imaging, molecular genetic and environmental factors and the dopamine hypothesis[J]. Neuropsychol Rev, 2007, 17(1): 39-59. doi: 10.1007/s11065-007-9019-9
    [3] 孙继超, 张碧霞, 朱万青, 等. 滋肾泻青汤联合盐酸托莫西汀治疗儿童注意缺陷多动障碍疗效观察[J]. 广西中医药大学学报, 2021, 24(4): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GSZB202104004.htm

    SUN JC, ZHANG BX, ZHU WQ, et al. Clinical observation on treatment of attention deficit hyperactivity disorder by zishen Xieqing Decoction in combination with atomoxetine hydrochloride[J]. J Guangxi Univ Chin Med, 2021, 24(4): 9-12. https://www.cnki.com.cn/Article/CJFDTOTAL-GSZB202104004.htm
    [4] REAGAN-SHAW S, NIHAL M, AHMAD N. Dose translation from animal to human studies revisited[J]. FASEB J, 2008, 22(3): 659-661. doi: 10.1096/fj.07-9574LSF
    [5] 袁海霞, 倪新强, 吴正治, 等. 基于"肾脑相关"探讨熟地黄对ADHD模型大鼠行为学的影响[J]. 中药材, 2018, 41(8): 1970-1974. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYCA201808042.htm

    YUAN HX, NI XQ, WU ZZ, et al. Impact of Rehmannia glutinosa on behavior of attention deficit hyperactivity disorder(ADHD) model rats based on the correlation of kidney and brain[J]. J Chin Med Mater, 2018, 41(8): 1970-1974. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYCA201808042.htm
    [6] 孙继超, 尤月, 周荣易, 等. 安神定志灵对ADHD模型大鼠前额叶、纹状体CDK5/DARPP32/PP1信号通路的影响[J]. 中国实验方剂学杂志, 2016, 22(17): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201617018.htm

    SUN JC, YOU Y, ZHOU RY, et al. Effects of Anshen dingzhiling compound on signaling pathway of CDK5/DARPP32/PP1 in ADHD rats' Striatum and prefrontal cortex[J]. Chin J Exp Tradit Med Formulae, 2016, 22(17): 81-86. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201617018.htm
    [7] PEREIRA-SANCHEZ V, CASTELLANOS FX. Neuroimaging in attention-deficit/hyperactivity disorder[J]. Curr Opin Psychiatry, 2021, 34(2): 105-111. doi: 10.1097/YCO.0000000000000669
    [8] KLEIN MO, BATTAGELLO DS, CARDOSO AR, et al. Dopamine: Functions, signaling, and association with neurological diseases[J]. Cell Mol Neurobiol, 2019, 39(1): 31-59. doi: 10.1007/s10571-018-0632-3
    [9] VOGT BA. Cingulate impairments in ADHD: Comorbidities, connections, and treatment[J]. Handb Clin Neurol, 2019, 166: 297-314.
    [10] BEAULIEU JM, GAINETDINOV RR. The physiology, signaling, and pharmacology of dopamine receptors[J]. Pharmacol Rev, 2011, 63(1): 182-217. doi: 10.1124/pr.110.002642
    [11] PETRILLO MG, OAKLEY RH, CIDLOWSKI JA. β-Arrestin-1 inhibits glucocorticoid receptor turnover and alters glucocorticoid signaling[J]. J Biol Chem, 2019, 294(29): 11225-11239. doi: 10.1074/jbc.RA118.007150
    [12] MA TL, ZHOU Y, ZHANG CY, et al. The role and mechanism of β-arrestin2 in signal transduction[J]. Life Sci, 2021, 275: 119364. doi: 10.1016/j.lfs.2021.119364
    [13] WANG N, SU P, ZHANG Y, et al. Protein kinase D1-dependent phosphorylation of dopamine D1 receptor regulates cocaine-induced behavioral responses[J]. Neuropsychopharmacology, 2014, 39(5): 1290-1301. doi: 10.1038/npp.2013.341
    [14] LIU C, KE P, ZHANG JJ, et al. Protein kinase inhibitor peptide as a tool to specifically inhibit protein kinase A[J]. Front Physiol, 2020, 11: 574030.
    [15] PANDALANENI S, KARUPPIAH V, SALEEM M, et al. Neuronal calcium sensor-1 binds the D2 dopamine receptor and G-protein-coupled receptor kinase 1 (GRK1) peptides using different modes of interactions[J]. J Biol Chem, 2015, 290(30): 18744-18756.
    [16] GUPTA MK, MOHAN ML, NAGA PRASAD SV. G protein-coupled receptor resensitization paradigms[J]. Int Rev Cell Mol Biol, 2018, 339: 63-91.
    [17] BURNS JA, KROLL DS, FELDMAN DE, et al. Molecular imaging of opioid and dopamine systems: Insights into the pharmacogenetics of opioid use disorders[J]. Front Psychiatry, 2019, 10: 626.
    [18] CLIFTON NE, TRENT S, THOMAS KL, et al. Regulation and function of activity-dependent Homer in synaptic plasticity[J]. Mol Neuropsychiatry, 2019, 5(3): 147-161.
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  45
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 网络出版日期:  2022-12-15
  • 发布日期:  2022-12-10

目录

    /

    返回文章
    返回