留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄芪注射液对大鼠急性脊髓损伤的神经保护作用及机制研究

冯韬 吕烨华 王盛 黄维 糜大国

冯韬, 吕烨华, 王盛, 黄维, 糜大国. 黄芪注射液对大鼠急性脊髓损伤的神经保护作用及机制研究[J]. 南京中医药大学学报, 2022, 38(12): 1128-1136. doi: 10.14148/j.issn.1672-0482.2022.1128
引用本文: 冯韬, 吕烨华, 王盛, 黄维, 糜大国. 黄芪注射液对大鼠急性脊髓损伤的神经保护作用及机制研究[J]. 南京中医药大学学报, 2022, 38(12): 1128-1136. doi: 10.14148/j.issn.1672-0482.2022.1128
FENG Tao, LYU Yehua, WANG Sheng, HUANG Wei, MI Daguo. Neuroprotective Effect and Mechanism of Astragalus Injection on Acute Spinal Cord Injury in Rats[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(12): 1128-1136. doi: 10.14148/j.issn.1672-0482.2022.1128
Citation: FENG Tao, LYU Yehua, WANG Sheng, HUANG Wei, MI Daguo. Neuroprotective Effect and Mechanism of Astragalus Injection on Acute Spinal Cord Injury in Rats[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(12): 1128-1136. doi: 10.14148/j.issn.1672-0482.2022.1128

黄芪注射液对大鼠急性脊髓损伤的神经保护作用及机制研究

doi: 10.14148/j.issn.1672-0482.2022.1128
基金项目: 

南通市卫生健康委员会青年课题A项目 QA2020016

南通大学校级科研基金青年项目 2019LQ016

南通市科技局社会民生科技计划项目 通科技〔2020〕170号

江苏省卫健委面上项目 H2019027

详细信息
    作者简介:

    冯韬, 男, 主治中医师, E-mail: fengtao198810@126.com

    通讯作者:

    糜大国, 男, 主任医师, 主要从事脊髓损伤修复研究, E-mail: midaguo@126.com

  • 中图分类号: R285.5

Neuroprotective Effect and Mechanism of Astragalus Injection on Acute Spinal Cord Injury in Rats

  • 摘要:   目的  基于细胞凋亡Fas和TRAIL死亡受体信号通路探讨黄芪注射液对大鼠急性脊髓损伤(SCI)的神经保护作用及机制。  方法  40只健康的雄性SD大鼠随机分为假手术组,SCI模型组, 黄芪注射液低、中、高剂量(1、2、4 mL · kg-1)组, 每组8只。采用改良的重物打击法构建大鼠急性SCI模型; 按照BBB评分和Rivlin斜板实验评价大鼠运动功能; 苏木精-伊红(Hematoxylin-eosin, HE)染色检测脊髓组织病理变化; 尼氏染色法检测脊髓神经元细胞损伤程度; 高通量转录组测序分析差异表达基因; qPCR验证基因转录水平的表达量; 利用TUNEL试剂盒检测各组脊髓细胞凋亡情况; Western blot检测凋亡通路关键蛋白表达水平。  结果  BBB评分和斜板试验结果显示, 与假手术组比较, 模型组大鼠表现出明显的运动功能障碍; HE染色显示模型组脊髓组织病理病变严重; 模型组尼氏染色着色较浅, 神经元细胞损伤严重; 与假手术组比较, 模型组脊髓中4 597个基因差异表达, Fas、TRAIL、Caspase-3、Caspase-8、Caspase-9和Bax蛋白表达显著上调(P < 0.01), Fas凋亡抑制分子FAIM和抗凋亡因子Bcl-2的蛋白表达量显著降低(P < 0.01)。与模型组比较, 黄芪注射液组的BBB评分、Rivlin斜板度数显著升高(P < 0.05, P < 0.01), 组织病变程度较小, 尼氏染色着色程度随剂量升高而变深, 黄芪注射液高剂量组脊髓神经细胞损伤和凋亡得到显著缓解(P < 0.01)。转录组测序和qPCR结果显示: 与模型组比较, 黄芪注射液中、高剂量组中参与细胞凋亡调控的FAIM和TRAIL mRNA差异表达(P < 0.01), 黄芪注射液高剂量组Fas、TRAIL、Caspase-3、Caspase-8、Caspase-9和Bax蛋白表达被剂量依赖性地抑制(P < 0.05,P < 0.01), FAIM和Bcl-2的蛋白表达上调(P < 0.01)。  结论  黄芪注射液可能通过对死亡受体途径Fas和TRAIL蛋白的抑制, 进而调控神经元细胞的程序性凋亡, 发挥对SCI的神经保护作用, 改善脊髓组织损伤病变程度, 加速后期神经运动功能障碍的恢复。

     

  • 图  1  各组大鼠术后各时间点BBB评分及斜板试验结果

    注: 与假手术组比较, ##P<0.01;与模型组比较, *P<0.05,* *P<0.01;与黄芪注射液低剂量组比较, $$P<0.01。x±sn=6。

    Figure  1.  BBB acores and Rivlin inclined plate test of rats in each group at each time point after operation

    图  2  脊髓组织病理学观察(10×, 标尺=200 μm)

    注: 与假手术组比较, ##P<0.01;与模型组比较, *P<0.05, * *P<0.01。x±sn=3。

    Figure  2.  Histopathological observation of spinal cord (10×, Bar=200 μm)

    图  3  转录组数据分析

    注: A.转录组数据的层次聚类分析; B.模型组与假手术组比较差异表达基因火山图; C.模型组与黄芪注射液高剂量组比较差异表达基因火山图; D.描绘全基因组RNA-Seq数据的Circos图; E.B和C中差异表达基因的韦恩图; Sham.假手术组; SCI.模型组; SCI_AS.黄芪注射液高剂量组

    Figure  3.  The analysis of transcriptome data

    图  4  FAIMTRAIL mRNA相对表达量

    注: 与假手术组比较, ##P<0.01;与模型组比较, *P<0.05, * *P<0.01;与黄芪注射液低剂量组比较, $$P<0.01。x±sn=3。

    Figure  4.  Relative expression of FAIM and TRAIL mRNA

    图  5  脊髓组织细胞凋亡情况检测(20×, 标尺=100 μm)

    注: 与假手术组比较, ##P<0.01;与模型组比较, *P<0.05, * *P<0.01;与黄芪注射液低剂量组比较, $$P<0.01。x±sn=3。

    Figure  5.  Detection of cell apoptosis in spinal cord tissue (20×, Bar=100 μm)

    图  6  细胞凋亡相关蛋白表达情况

    注: 与假手术组比较, ##P<0.01;与模型组比较, *P<0.05, * *P<0.01;与黄芪注射液低剂量组比较, $P<0.05,$$P<0.01。x±sn=3。

    Figure  6.  Expression of proteins related to apoptosis pathway

  • [1] KONG XY, GAO J. Macrophage polarization: A key event in the secondary phase of acute spinal cord injury[J]. J Cell Mol Med, 2017, 21(5): 941-954. doi: 10.1111/jcmm.13034
    [2] DIMITRIJEVIC MR, DANNER SM, MAYR W. Neurocontrol of movement in humans with spinal cord injury[J]. Artif Organs, 2015, 39(10): 823-833. doi: 10.1111/aor.12614
    [3] WANG HW, LIU XW, ZHAO YW, et al. Incidence and pattern of traumatic spinal fractures and associated spinal cord injury resulting from motor vehicle collisions in China over 11 years[J]. Medicine, 2016, 95(43): e5220. doi: 10.1097/MD.0000000000005220
    [4] WANG YL, YUAN YT, GAO YT, et al. MicroRNA-31 regulating apoptosis by mediating the phosphatidylinositol-3 kinase/protein kinase B signaling pathway in treatment of spinal cord injury[J]. Brain Dev, 2019, 41(8): 649-661. doi: 10.1016/j.braindev.2019.04.010
    [5] YANG R, GUO L, HUANG L, et al. Epidemiological characteristics of traumatic spinal cord injury in Guangdong, China[J]. Spine, 2017, 42(9): E555-E561. doi: 10.1097/BRS.0000000000001896
    [6] ALIZADEH A, DYCK SM, KARIMI-ABDOLREZAEE S. Traumatic spinal cord injury: An overview of pathophysiology, models and acute injury mechanisms[J]. Front Neurol, 2019, 10: 282. doi: 10.3389/fneur.2019.00282
    [7] ZHENG YJ, REN WY, ZHANG LN, et al. A review of the pharmacological action of Astragalus polysaccharide[J]. Front Pharmacol, 2020, 11: 349. doi: 10.3389/fphar.2020.00349
    [8] LUO YM, QIN Z, HONG Z, et al. Astragaloside Ⅳ protects against ischemic brain injury in a murine model of transient focal ischemia[J]. Neurosci Lett, 2004, 363(3): 218-223. doi: 10.1016/j.neulet.2004.03.036
    [9] WEI RD, LIU HD, CHEN R, et al. Astragaloside Ⅳ combating liver cirrhosis through the PI3K/Akt/mTOR signaling pathway[J]. Exp Ther Med, 2019, 17(1): 393-397.
    [10] ZHU JH, WEN K. Astragaloside Ⅳ inhibits TGF-β1-induced epithelial-mesenchymal transition through inhibition of the PI3K/Akt/NF-κB pathway in gastric cancer cells[J]. Phytother Res, 2018, 32(7): 1289-1296. doi: 10.1002/ptr.6057
    [11] LU WS, LI S, GUO WW, et al. Effects of astragaloside Ⅳ on diabetic nephropathy in rats[J]. Genet Mol Res, 2015, 14(2): 5427-5434. doi: 10.4238/2015.May.22.12
    [12] COSTA IM, LIMA FOV, FERNANDES LCB, et al. Astragaloside Ⅳ supplementation promotes a neuroprotective effect in experimental models of neurological disorders: A systematic review[J]. Curr Neuropharmacol, 2019, 17(7): 648-665. doi: 10.2174/1570159X16666180911123341
    [13] LIU GY, SONG JM, GUO YL, et al. Astragalus injection protects cerebral ischemic injury by inhibiting neuronal apoptosis and the expression of JNK3 after cerebral ischemia reperfusion in rats[J]. Behav Brain Funct, 2013, 9: 36. doi: 10.1186/1744-9081-9-36
    [14] ZHOU LY, SONG ZF, ZHOU LW, et al. Protective role of Astragalus injection in spinal cord ischemia-reperfusion injury in rats[J]. Neurosciences, 2018, 23(2): 116-121. doi: 10.17712/nsj.2018.4.20170391
    [15] YUE RC, LI X, CHEN BY, et al. Astragaloside Ⅳ attenuates glutamate-induced neurotoxicity in PC12 cells through raf-MEK-ERK pathway[J]. PLoS ONE, 2015, 10(5): e0126603. doi: 10.1371/journal.pone.0126603
    [16] YIN F, ZHOU HF, FANG YC, et al. Astragaloside Ⅳ alleviates ischemia reperfusion-induced apoptosis by inhibiting the activation of key factors in death receptor pathway and mitochondrial pathway[J]. J Ethnopharmacol, 2020, 248: 112319. doi: 10.1016/j.jep.2019.112319
    [17] YAO NW, LU Y, SHI LQ, et al. Neuroprotective effect of combining tanshinone ⅡA with low-dose methylprednisolone following acute spinal cord injury in rats[J]. Exp Ther Med, 2017, 13(5): 2193-2202. doi: 10.3892/etm.2017.4271
    [18] XU J, KIM GM, CHEN SW, et al. iNOS and nitrotyrosine expression after spinal cord injury[J]. J Neurotrauma, 2001, 18(5): 523-532. doi: 10.1089/089771501300227323
    [19] SINGH C, ROY-CHOWDHURI S. Quantitative real-time PCR: Recent advances[J]. Methods Mol Biol, 2016, 1392: 161-176.
    [20] KHORASANIZADEH M, YOUSEFIFARD M, ESKIAN M, et al. Neurological recovery following traumatic spinal cord injury: A systematic review and meta-analysis[J]. J Neurosurg Spine, 2019, 30(5): 683-699. doi: 10.3171/2018.10.SPINE18802
    [21] WANG HL, ZHOU QH, XU MB, et al. Astragaloside Ⅳ for experimental focal cerebral ischemia: Preclinical evidence and possible mechanisms[J]. Oxidat Med Cell Longev, 2017, 2017: 8424326.
    [22] XIA L, GUO DX, CHEN B. Neuroprotective effects of astragaloside Ⅳ on Parkinson disease models of mice and primary astrocytes[J]. Exp Ther Med, 2017, 14(6): 5569-5575.
    [23] LIN JL, PAN XX, HUANG CHONGAN, et al. Dual regulation of microglia and neurons by Astragaloside Ⅳ-mediated mTORC1 suppression promotes functional recovery after acute spinal cord injury[J]. J Cell Mol Med, 2020, 24(1): 671-685. doi: 10.1111/jcmm.14776
    [24] OYINBO CA. Secondary injury mechanisms in traumatic spinal cord injury: A nugget of this multiply cascade[J]. Acta Neurobiol Exp, 2011, 71(2): 281-299.
    [25] VON LEDEN RE, YAUGER YJ, KHAYRULLINA G, et al. Central nervous system injury and nicotinamide adenine dinucleotide phosphate oxidase: Oxidative stress and therapeutic targets[J]. J Neurotrauma, 2017, 34(4): 755-764. doi: 10.1089/neu.2016.4486
    [26] ZHANG Y, ZHANG Y, JIN XF, et al. The role of astragaloside Ⅳ against cerebral ischemia/reperfusion injury: Suppression of apoptosis via promotion of P62-LC3-autophagy[J]. Molecules, 2019, 24(9): 1838. doi: 10.3390/molecules24091838
    [27] BEATTIE MS, FAROOQUI AA, BRESNAHAN JC. Review of current evidence for apoptosis after spinal cord injury[J]. J Neurotrauma, 2000, 17(10): 915-925. doi: 10.1089/neu.2000.17.915
    [28] PRADELLI LA, BÉNÉTEAU M, RICCI JE. Mitochondrial control of caspase-dependent and-independent cell death[J]. Cell Mol Life Sci, 2010, 67(10): 1589-1597. doi: 10.1007/s00018-010-0285-y
    [29] KANTARI C, WALCZAK H. Caspase-8 and bid: Caught in the act between death receptors and mitochondria[J]. Biochim Biophys Acta BBA Mol Cell Res, 2011, 1813(4): 558-563. doi: 10.1016/j.bbamcr.2011.01.026
    [30] GALLUZZI L, BLOMGREN K, KROEMER G. Mitochondrial membrane permeabilization in neuronal injury[J]. Nat Rev Neurosci, 2009, 10(7): 481-494. doi: 10.1038/nrn2665
    [31] PLANELLS-FERRER L, URRESTI J, COCCIA E, et al. Fas apoptosis inhibitory molecules: More than death-receptor antagonists in the nervous system[J]. J Neurochem, 2016, 139(1): 11-21. doi: 10.1111/jnc.13729
    [32] SUREDA FX, JUNYENT F, VERDAGUER E, et al. Antiapoptotic drugs: A therapautic strategy for the prevention of neurodegenerative diseases[J]. Curr Pharm Des, 2011, 17(3): 230-245. doi: 10.2174/138161211795049732
    [33] HISATOMI T, ISHIBASHI T, MILLER JW, et al. Pharmacological inhibition of mitochondrial membrane permeabilization for neuroprotection[J]. Exp Neurol, 2009, 218(2): 347-352. doi: 10.1016/j.expneurol.2009.03.007
  • 加载中
图(6)
计量
  • 文章访问数:  159
  • HTML全文浏览量:  23
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 网络出版日期:  2022-12-15
  • 发布日期:  2022-12-10

目录

    /

    返回文章
    返回