留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中药经皮给药制剂的分子药剂学研究进展

薛雅琪 王著显 梁佩仪 陈鸿楷 翟丹 刘莉 江翠平 申春燕 刘强

薛雅琪, 王著显, 梁佩仪, 陈鸿楷, 翟丹, 刘莉, 江翠平, 申春燕, 刘强. 中药经皮给药制剂的分子药剂学研究进展[J]. 南京中医药大学学报, 2022, 38(11): 983-989. doi: 10.14148/j.issn.1672-0482.2022.0983
引用本文: 薛雅琪, 王著显, 梁佩仪, 陈鸿楷, 翟丹, 刘莉, 江翠平, 申春燕, 刘强. 中药经皮给药制剂的分子药剂学研究进展[J]. 南京中医药大学学报, 2022, 38(11): 983-989. doi: 10.14148/j.issn.1672-0482.2022.0983
XUE Ya-qi, WANG Zhu-xian, LIANG Pei-yi, CHEN Hong-kai, ZHAI Dan, LIU Li, JIANG Cui-ping, SHEN Chun-yan, LIU Qiang. Advances in Molecular Pharmaceutics of Transdermal Drug Delivery Preparations of Traditional Chinese Medicine[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(11): 983-989. doi: 10.14148/j.issn.1672-0482.2022.0983
Citation: XUE Ya-qi, WANG Zhu-xian, LIANG Pei-yi, CHEN Hong-kai, ZHAI Dan, LIU Li, JIANG Cui-ping, SHEN Chun-yan, LIU Qiang. Advances in Molecular Pharmaceutics of Transdermal Drug Delivery Preparations of Traditional Chinese Medicine[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(11): 983-989. doi: 10.14148/j.issn.1672-0482.2022.0983

中药经皮给药制剂的分子药剂学研究进展

doi: 10.14148/j.issn.1672-0482.2022.0983
基金项目: 

国家自然科学基金面上项目 82074023

国家自然科学基金面上项目 81874346

详细信息
    作者简介:

    薛雅琪, 女, 硕士研究生, E-mail: 1359986385@qq.com

    刘强, 教授, 博士, 博士生导师, 博士后合作导师, 耶鲁大学访问学者。南方医科大学中医药学院中药制剂学教研室主任, 广东省高校中药化妆品工程技术研究中心主任, 广州市白云区中药化妆品行业创新实验室主任, 广东省教育部中药速效片剂产学研结合创新平台主任。研究方向包括: 传统中药制剂的作用机理研究; 中药制剂新剂型与新技术研究; 中药健康产品开发研究与名优中成药二次开发研究; 中药与3D打印研究和中药化妆品研究与开发。承担国家自然科学基金项目5项,广东省科技计划项目4项,广东省粤港合作项目1项, 广州市民生重大科技专项2项, 开发新产品17个, 发表SCI论文40余篇, 申请专利80多项,授权30项

    通讯作者:

    刘强, 男, 教授, 主要从事中药新剂型与新技术研究, E-mail: liuqiang@smu.edu.cn

  • 中图分类号: R283

Advances in Molecular Pharmaceutics of Transdermal Drug Delivery Preparations of Traditional Chinese Medicine

  • 摘要: 分子药剂学是从分子水平研究制剂作用规律与机理的学科, 它可阐明经皮给药制剂的成型原理以及药物、基质、生物机体三者之间的分子间相互作用影响制剂释药、经皮渗透行为的分子机制。近年来, 分子药剂学在经皮给药制剂中得到越来越多的应用。通过对分子药剂学在中药经皮给药制剂中的应用进行文献综述, 可以探讨中药经皮给药制剂在制剂成型、释药和渗透的分子间相互作用,以及阐明中药经皮渗透促进剂促进药物渗透皮肤的分子机制, 为分子药剂学在中药经皮给药制剂中的应用提供参考, 从而推动中药经皮给药制剂的开发和应用。

     

  • 表  1  分子药剂学其他研究技术检测内容及分子间相互作用类型

    Table  1.   Molecular pharmacy other research technology detection index and types of intermolecular interactions

    研究技术 检测内容 分子间相互作用类型
    FT-IR 特征官能团位移情况、峰宽变化以及是否有新峰生成 氢键相互作用
    Raman 特征官能团位移情况、峰宽变化 氢键相互作用
    DSC 玻璃转化温度(Tg)的变化 氢键相互作用
    XPS 药物-基质分子的质子化状态 离子间相互作用
    SSNMR 药物-基质间的离子键 离子间相互作用
    下载: 导出CSV
  • [1] 雷雅婷, 张也, 蔡雄, 等. 微透析技术在中药经皮给药系统中研究进展[J]. 中成药, 2021, 43(6): 1555-1559. doi: 10.3969/j.issn.1001-1528.2021.06.030

    LEI YT, ZHANG Y, CAI X, et al. Research progress of microdialysis technology in transdermal drug delivery system of traditional Chinese medicine[J]. Chin Tradit Pat Med, 2021, 43(6): 1555-1559. doi: 10.3969/j.issn.1001-1528.2021.06.030
    [2] 马丽霞, 亓雅丽, 庄欣雅, 等. 中药外用制剂的品质传递过程与评价方法研究进展[J]. 南京中医药大学学报, 2022, 38(1): 9-17. doi: 10.14148/j.issn.1672-0482.2022.0009

    MA LX, QI YL, ZHUANG XY, et al. Research progress on quality transfer process and evaluation methods of TCM external preparations[J]. J Nanjing Univ Tradit Chin Med, 2022, 38(1): 9-17. doi: 10.14148/j.issn.1672-0482.2022.0009
    [3] ZAGORSKA-DZIOK M, SOBCZAK M. Hydrogel-based active substance release systems for cosmetology and dermatology application: A review[J]. Pharmaceutics, 2020, 12(5): 396. doi: 10.3390/pharmaceutics12050396
    [4] 樊蕊. 燕麦β-葡聚糖复合凝胶制备技术及其凝胶机理研究[J]. 食品工业科技, 2019, 40(18): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201918006.htm

    FAN R. Preparation technology of β-glucan composite gel and the analysis of gelation mechanism[J]. Sci Technol Food Ind, 2019, 40(18): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SPKJ201918006.htm
    [5] 鲁金佩, 丁可盈, 郭雯雯, 等. 不同离子多糖对鱼明胶凝胶特性和结构的影响[J]. 食品与发酵工业, 2021, 47(17): 140-147. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX202117021.htm

    LU JP, DING KY, GUO WW, et al. Effects of different ionic polysaccharides on the gel and structural properties of fish gelatin[J]. Food Ferment Ind, 2021, 47(17): 140-147. https://www.cnki.com.cn/Article/CJFDTOTAL-SPFX202117021.htm
    [6] 冯颖, 赵孟杰, 崔倩, 等. 分子模拟技术在壳聚糖功能材料开发和应用中的研究进展[J]. 化工进展, 2022, 41(8): 4241-4253. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202208023.htm

    FENG Y, ZHAO MJ, CUI Q, et al. Research progress of molecular simulation technology in the development and application of chitosan functional materials[J]. Chem Ind Eng Prog, 2022, 41(8): 4241-4253. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202208023.htm
    [7] ZHENG GX, XUE WW, YANG FY, et al. Revealing vilazodone's binding mechanism underlying its partial agonism to the 5-HT1A receptor in the treatment of major depressive disorder[J]. Phys Chem Chem Phys, 2017, 19(42): 28885-28896. doi: 10.1039/C7CP05688E
    [8] LIU C, FARAH N, WENG W, et al. Investigation of the permeation enhancer strategy on benzoylaconitine transdermal patch: The relationship between transdermal enhancement strength and physicochemical properties of permeation enhancer[J]. Eur J Pharm Sci, 2019, 138: 105009. doi: 10.1016/j.ejps.2019.105009
    [9] NAN LY, LIU C, LI QY, et al. Investigation of the enhancement effect of the natural transdermal permeation enhancers from Ledum palustre L. var. angustum N. Busch: Mechanistic insight based on interaction among drug, enhancers and skin[J]. Eur J Pharm Sci, 2018, 124: 105-113. doi: 10.1016/j.ejps.2018.08.025
    [10] 李民. 粗粒化模型在蛋白质分子动力学模拟中的发展和应用[D]. 上海: 华东师范大学, 2017.

    LI M. The development and application of coarse-grained model in protein molecular dynamics simulations[D]. Shanghai: East China Normal University, 2017.
    [11] LUO Z, LIU C, QUAN P, et al. Mechanistic insights of the controlled release capacity of polar functional group in transdermal drug delivery system: The relationship of hydrogen bonding strength and controlled release capacity[J]. Acta Pharm Sin B, 2020, 10(5): 928-945. doi: 10.1016/j.apsb.2019.11.014
    [12] NOTMAN R, ANWAR J. Breaching the skin barrier—Insights from molecular simulation of model membranes[J]. Adv Drug Deliv Rev, 2013, 65(2): 237-250. doi: 10.1016/j.addr.2012.02.011
    [13] LIU C, QUAN P, FANG L. Effect of drug physicochemical properties on drug release and their relationship with drug skin permeation behaviors in hydroxyl pressure sensitive adhesive[J]. Eur J Pharm Sci, 2016, 93: 437-446. doi: 10.1016/j.ejps.2016.08.048
    [14] YANG DG, WAN XC, QUAN P, et al. The role of carboxyl group of pressure sensitive adhesive in controlled release of propranolol in transdermal patch: Quantitative determination of ionic interaction and molecular mechanism characterization[J]. Eur J Pharm Sci, 2018, 115: 330-338. doi: 10.1016/j.ejps.2018.01.038
    [15] LIU J, FANG L, LIU C. Investigating the influences of intermolecular interactions on viscoelastic performance of pressure-sensitive adhesive by FT-IR spectroscopy and molecular modeling[J]. Drug Dev Ind Pharm, 2020, 46(6): 1005-1014. doi: 10.1080/03639045.2020.1764026
    [16] ZHANG S, LIU C, YANG DG, et al. Mechanism insight on drug skin delivery from polyurethane hydrogels: Roles of molecular mobility and intermolecular interaction[J]. Eur J Pharm Sci, 2021, 161: 105783. doi: 10.1016/j.ejps.2021.105783
    [17] LI QY, WAN XC, LIU C, et al. Investigating the role of ion-pair strategy in regulating nicotine release from patch: Mechanistic insights based on intermolecular interaction and mobility of pressure sensitive adhesive[J]. Eur J Pharm Sci, 2018, 119: 102-111. doi: 10.1016/j.ejps.2018.04.008
    [18] WANG ZX, XUE YQ, ZHU ZM, et al. Quantitative structure-activity relationship of enhancers of licochalcone A and glabridin release and permeation enhancement from carbomer hydrogel[J]. Pharmaceutics, 2022, 14(2): 262. doi: 10.3390/pharmaceutics14020262
    [19] LIU C, QUAN P, LI SS, et al. A systemic evaluation of drug in acrylic pressure sensitive adhesive patch in vitro and in vivo: The roles of intermolecular interaction and adhesive mobility variation in drug controlled release[J]. J Control Release, 2017, 252: 83-94. doi: 10.1016/j.jconrel.2017.03.003
    [20] LI JJ, ZHAO JS, TAO L, et al. The effect of polymeric excipients on the physical properties and performance of amorphous dispersions: Part Ⅰ, free volume and glass transition[J]. Pharm Res, 2015, 32(2): 500-515. doi: 10.1007/s11095-014-1478-0
    [21] LUO Z, WAN XC, LIU C, et al. Mechanistic insights of the controlled release properties of amide adhesive and hydroxyl adhesive[J]. Eur J Pharm Sci, 2018, 119: 13-21. doi: 10.1016/j.ejps.2018.03.033
    [22] LUO Z, LIU C, ZHANG P, et al. Mechanistic insights of the critical role of hydrogen donor in controlling drug release from acrylate adhesive[J]. J Pharm Sci, 2020, 109(2): 1096-1104. doi: 10.1016/j.xphs.2019.10.058
    [23] CHAN SY, QI S, CRAIG DQM. An investigation into the influence of drug-polymer interactions on the miscibility, processability and structure of polyvinylpyrrolidone-based hot melt extrusion formulations[J]. Int J Pharm, 2015, 496(1): 95-106. doi: 10.1016/j.ijpharm.2015.09.063
    [24] 唐伯明, 丁勇杰, 苏玥, 等. 基于自由体积理论的沥青分子模型黏度预测[J]. 科学通报, 2020, 65(30): 3308-3317. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202030010.htm

    TANG BM, DING YJ, SU Y, et al. Viscosity estimation of model asphalt based on free volume theory[J]. Chin Sci Bull, 2020, 65(30): 3308-3317. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202030010.htm
    [25] KISSI EO, KASTEN G, LÖBMANN K, et al. The role of glass transition temperatures in coamorphous drug-amino acid formulations[J]. Mol Pharm, 2018, 15(9): 4247-4256. doi: 10.1021/acs.molpharmaceut.8b00650
    [26] XIA R, CAO XZ, GAO MZ, et al. Probing sub-nano level molecular packing and correlated positron annihilation characteristics of ionic cross-linked chitosan membranes using positron annihilation spectroscopy[J]. Phys Chem Chem Phys, 2017, 19(5): 3616-3626. doi: 10.1039/C6CP07434K
    [27] 童想柳, 杨雅丽, 林国钡, 等. 不同类型丙烯酸酯压敏胶中右旋酮洛芬的体内外释药行为研究及原因探究[J]. 中国医药工业杂志, 2019, 50(1): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHOU201901010.htm

    TONG XL, YANG YL, LIN GB, et al. Investigation on dexketoprofen release in vitro and in vivo from different kinds of acrylate pressure sensitive adhesives and cause analysis[J]. Chin J Pharm, 2019, 50(1): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHOU201901010.htm
    [28] WOHLRAB J, GEBERT A, NEUBERT RHH. Lipids in the skin and pH[M]//pH of the Skin: Issues and Challenges, 2018: 64-70.
    [29] EYERICH S, EYERICH K, TRAIDL-HOFFMANN C, et al. Cutaneous barriers and skin immunity: Differentiating a connected network[J]. Trends Immunol, 2018, 39(4): 315-327. doi: 10.1016/j.it.2018.02.004
    [30] ZHOU Z, LIU C, WAN XC, et al. Development of a w/o emulsion using ionic liquid strategy for transdermal delivery of anti-aging component α-lipoic acid: Mechanism of different ionic liquids on skin retention and efficacy evaluation[J]. Eur J Pharm Sci, 2020, 141: 105042. doi: 10.1016/j.ejps.2019.105042
    [31] GU YW, GU Q, YANG Q, et al. Finite element analysis for predicting skin pharmacokinetics of nano transdermal drug delivery system based on the multilayer geometry model[J]. Int J Nanomedicine, 2020, 15: 6007-6018. doi: 10.2147/IJN.S261386
    [32] DEL REGNO A, NOTMAN R. Permeation pathways through lateral domains in model membranes of skin lipids[J]. Phys Chem Chem Phys, 2018, 20(4): 2162-2174.
    [33] MARWAH H, GARG T, GOYAL AK, et al. Permeation enhancer strategies in transdermal drug delivery[J]. Drug Deliv, 2016, 23(2): 564-578.
    [34] 顾琦, 朱学敏, 魏旭超, 等. 温热药性对中药挥发油透皮促渗剂皮肤毒性的影响及其机制研究[J]. 中国中药杂志, 2021, 46(2): 359-365. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202102014.htm

    GU Q, ZHU XM, WEI XC, et al. Effect of hot or warm property on skin toxicity of essential oil as penetration enhancer and its mechanism[J]. China J Chin Mater Med, 2021, 46(2): 359-365. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY202102014.htm
    [35] 王贺平, 初天哲, 李小娜, 等. 立体异构单萜醇油酸酯的制备及促透活性评价[J]. 化学通报, 2021, 84(6): 578-584, 590. https://www.cnki.com.cn/Article/CJFDTOTAL-HXTB202106009.htm

    WANG HP, CHU TZ, LI XN, et al. Syntheses and enhancing effect evaluation of the stereoisomeric monoterpene alcohol oleates[J]. Chemistry, 2021, 84(6): 578-584, 590. https://www.cnki.com.cn/Article/CJFDTOTAL-HXTB202106009.htm
    [36] YANG SF, WANG R, WAN G, et al. A multiscale study on the penetration enhancement mechanism of menthol to osthole[J]. J Chem Inf Model, 2016, 56(11): 2234-2242.
    [37] WANG ZX, XUE YQ, CHEN TT, et al. Glycyrrhiza acid micelles loaded with licochalcone A for topical delivery: Co-penetration and anti-melanogenic effect[J]. Eur J Pharm Sci, 2021, 167: 106029.
    [38] KIM AV, SHELEPOVA EA, EVSEENKO VI, et al. Mechanism of the enhancing effect of glycyrrhizin on nifedipine penetration through a lipid membrane[J]. J Mol Liq, 2021, 344: 117759.
    [39] LIU XC, LIU MY, LIU C, et al. An insight into the molecular mechanism of the temporary enhancement effect of isopulegol decanoate on the skin[J]. Int J Pharm, 2017, 529(1/2): 161-167.
    [40] RUAN SF, WANG ZX, XIANG SJ, et al. Mechanisms of white mustard seed (Sinapis alba L. ) volatile oils as transdermal penetration enhancers[J]. Fitoterapia, 2019, 138: 104195.
    [41] DAI XX, YIN QQ, WAN G, et al. Effects of concentrations on the transdermal permeation enhancing mechanisms of borneol: A coarse-grained molecular dynamics simulation on mixed-bilayer membranes[J]. Int J Mol Sci, 2016, 17(8): 1349.
    [42] CUI Y, LI LZ, ZHANG L, et al. Enhancement and mechanism of transdermal absorption of terpene-induced propranolol hydrochloride[J]. Arch Pharm Res, 2011, 34(9): 1477.
    [43] WANG R, WU Z, YANG S, et al. A molecular interpretation on the different penetration enhancement effect of borneol and menthol towards 5-fluorouracil[J]. Int J Mol Sci, 2017, 18(12): E2747.
    [44] LI MX, LIU C, CAI Y, et al. Transdermal enhancement strategy of lappaconitine: Alteration of keratin configuration by counter-ion[J]. AAPS Pharm Sci Tech, 2022, 23(1): 61.
  • 加载中
表(1)
计量
  • 文章访问数:  183
  • HTML全文浏览量:  25
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-11
  • 网络出版日期:  2022-11-19
  • 发布日期:  2022-11-10

目录

    /

    返回文章
    返回