留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

动物药现代研究方法学进展与展望

刘睿 武文星 朱悦 郭盛 赵明 曹鹏 段金廒

刘睿, 武文星, 朱悦, 郭盛, 赵明, 曹鹏, 段金廒. 动物药现代研究方法学进展与展望[J]. 南京中医药大学学报, 2022, 38(10): 857-869. doi: 10.14148/j.issn.1672-0482.2022.0857
引用本文: 刘睿, 武文星, 朱悦, 郭盛, 赵明, 曹鹏, 段金廒. 动物药现代研究方法学进展与展望[J]. 南京中医药大学学报, 2022, 38(10): 857-869. doi: 10.14148/j.issn.1672-0482.2022.0857
LIU Rui, WU Wen-xing, ZHU Yue, GUO Sheng, ZHAO Ming, CAO Peng, DUAN Jin-ao. Progress and Prospects of Modern Research Methodology of Animal Derived Traditional Chinese Medicines[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(10): 857-869. doi: 10.14148/j.issn.1672-0482.2022.0857
Citation: LIU Rui, WU Wen-xing, ZHU Yue, GUO Sheng, ZHAO Ming, CAO Peng, DUAN Jin-ao. Progress and Prospects of Modern Research Methodology of Animal Derived Traditional Chinese Medicines[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(10): 857-869. doi: 10.14148/j.issn.1672-0482.2022.0857

动物药现代研究方法学进展与展望

doi: 10.14148/j.issn.1672-0482.2022.0857
基金项目: 

国家自然科学基金面上项目 81973450

国家重点研发计划 2018YFC1706100

江苏省高校“青蓝工程”中青年学术带头人; 江苏省农业科技自主创新项目 CX(22)3173

南京中医药大学中药学一流学科开放课题 2020YLXK009

详细信息
    作者简介:

    刘睿, 教授, 硕士研究生导师, University of Wisconsin-Madison访问学者。主要从事动物药资源化学及海洋药用生物资源开发利用研究。先后主持国家自然科学基金等省部级以上科研项目7项入选江苏省“青蓝工程”中青年学术带头人、江苏省“333工程”第三层次人才、中华中医药学会“青年人才托举工程”以第一作者或通讯作者在Analytical Chemistry、Food Chemistry、Analytica Chimica Acta等期刊发表学术论文60余篇, 获国家授权发明专利20余项, 获江苏省科学技术二等奖, 国家海洋科学技术二等奖。
    刘睿, 男,教授, E-mail: liurui@njucm.edu.cn

    通讯作者:

    段金廒, 男,教授, 博士生导师, 主要从事中药资源化学研究及资源循环利用研究, E-mail: dja@njucm.edu.cn

  • 中图分类号: R282.74

Progress and Prospects of Modern Research Methodology of Animal Derived Traditional Chinese Medicines

  • 摘要: 动物药资源是祖国医药学宝库的重要组成部分, 特别是珍稀动物药资源为中华民族生存繁衍和人口健康做出了重要贡献。基于药用动物资源来源渠道多样、基原种类丰富, 动物药功效物质类型复杂、适宜的活性评价方法较为薄弱等因素, 我国动物药现代科学研究相较于植物药的研究进展尚显滞后, 特别是符合动物药研究特色的系统方法体系亟待加强和完善。基于生物化学、天然产物化学、中药资源化学、系统生物学、生物工程、生物信息学等多学科现代科学技术进展, 结合动物药的品质形成、功效物质基础、药材生产与质量评价、多途径替代策略等层面, 较为系统地回顾分析了近年来我国动物药研究的方法学进展。从基于多组学、生物信息学、生物工程等技术方法的动物药功效物质纯化、鉴定与制备研究, 动物药生物效应评价与机制研究,基于专属肽类定性/定量分析的动物药精准质控研究,动物药现代研究方法学的展望等方面进行了梳理和凝练, 以期为推动药用动物资源及动物药研究和产业化提供方法学借鉴, 为进一步丰富完善适宜于动物药研究的系统方法学提供参考, 为促进我国动物药资源与特色经济产业可持续发展做出应有的贡献。

     

  • 图  1  基于多学科交叉、多方法体系的动物药研究策略

    Figure  1.  Animal derived traditional Chinese medicines research strategy based on multidisciplinary and multi-method system

    图  2  动物药亟待解决问题与展望

    Figure  2.  Problems and prospects of animal medicine

  • [1] 赵润怀, 贾海彬, 周永红, 等. 我国动物药资源供给现状及可持续发展的思考[J]. 中国现代中药, 2020, 22(6): 835-839.

    ZHAO RH, JIA HB, ZHOU YH, et al. Combination of protection and development is the way to solve the dilemma of sustainable utilization of animal medicine[J]. Mod Chin Med, 2020, 22(6): 835-839.
    [2] 刘睿, 吴皓. 江苏海洋生物医药研究现状与发展机遇的思考[J]. 南京中医药大学学报, 2018, 34(3): 217-221.

    LIU R, WU H. Thinking on development opportunities and research status of Jiangsu marine biological medicine[J]. J Nanjing Univ Tradit Chin Med, 2018, 34(3): 217-221.
    [3] 靳艳, 刘晓艳, 邹汉法. 基于蛋白质组学、肽组学的中药动物药活性组分的研究[J]. 世界科学技术-中医药现代化, 2011, 13(1): 162-166.

    JIN Y, LIU XY, ZOU HF. Screening bioactive protein and peptides in animal medicine of Chinese materia medica by proteomics and peptidomics[J]. World Sci Technol Mod Tradit Chin Med Mater Med, 2011, 13(1): 162-166.
    [4] 胡艳红, 颜鑫, 雷燕, 等. 鹿茸的化学成分、药理作用与临床应用研究进展[J]. 辽宁中医药大学学报, 2021, 23(9): 47-52.

    HU YH, YAN X, LEI Y, et al. Research progress on chemical constituents, pharmacological effects and clinical application of Lurong(cervi Cornu pantotrichum)[J]. J Liaoning Univ Tradit Chin Med, 2021, 23(9): 47-52.
    [5] 胡蕊, 谢明, 裴帅龙, 等. 犀角和水牛角的本草考证研究[J]. 中医药信息, 2022, 39(1): 70-74.

    HU R, XIE M, PEI SL, et al. Bencaological study of rhinoceros horn and buffalo horn[J]. Inf Tradit Chin Med, 2022, 39(1): 70-74.
    [6] 李友宾, 彭蕴茹, 段金廒. 羚羊角的研究概况[J]. 江苏中医药, 2007, 39(12): 75-77.

    LI YB, PENG YR, DUAN JA. General situation of research on antelope horn[J]. Jiangsu J Tradit Chin Med, 2007, 39(12): 75-77.
    [7] 李新月, 苏芳芳, 蒋超, 等. 中药熊胆功效演进及成分研究概述[J]. 中国中药杂志, 2022, 47(18): 4846-4853.

    LI XY, SU FF, JIANG C, et al. Efficacy evolution of bear bile and related research on components[J]. China J Chin Mater Med, 2022, 47(18): 4846-4853.
    [8] LIU R, WANG M, DUAN JA, et al. Purification and identification of three novel antioxidant peptides from Cornu Bubali (water buffalo horn)[J]. Peptides, 2010, 31(5): 786-793.
    [9] CAO ZY, SHEN WQ, PAN YP, et al. Purification, characterization of two peptides from Buthus martensi Karch[J]. J Pept Res, 2003, 62(6): 252-259.
    [10] WANG LC, ZHANG K, DI LQ, et al. Isolation and structural elucidation of novel homogenous polysaccharide from Mactra veneriformis[J]. Carbohydr Polym, 2011, 86(2): 982-987.
    [11] ZHAO M, XIE YQ, CHEN HM, et al. Efficient extraction of low-abundance peptides from digested proteins and simultaneous exclusion of large-sized proteins with novel hydrophilic magnetic zeolitic imidazolate frameworks[J]. Talanta, 2017, 167: 392-397.
    [12] LI N, ZHANG L, SHI HL, et al. C18-functionalized magnetic nanocomposites fabricated by one-step aqueous coating of tailored oligopeptides for enrichment of low-abundance peptides[J]. J Chromatogr A, 2021, 1636: 461730.
    [13] 刘婷, 韩疏影, 康安, 等. 核壳型Fe3O4@PDA@Au纳米材料对水牛角含巯基肽类成分的富集研究[J]. 南京中医药大学学报, 2020, 36(3): 396-400.

    LIU T, HAN SY, KANG A, et al. Enrichment of thiol-containing peptides in water buffalo horn by core-shell Fe3O4@PDA@Au nano-materials[J]. J Nanjing Univ Tradit Chin Med, 2020, 36(3): 396-400.
    [14] WEI YQ, LIU T, ZHENG BR, et al. A strategy for the enrichment and characterization of disulfide bond-contained proteins from Chinese cobra (Naja atra) venom[J]. J Sep Sci, 2022, 45(4): 812-823.
    [15] LU WG, CHENG XY, CHEN J, et al. A Buthus martensii Karsch scorpion sting targets Nav1.7 in mice and mimics a phenotype of human chronic pain[J]. Pain, 2022, 163(2): e202-e214.
    [16] 杨彬, 高文远, 张艳军. 基于转录组学-蛋白质组学-多肽组学整合关联分析策略的动物药蛋白多肽类成分研究思路及方法[J]. 中草药, 2019, 50(5): 1033-1038.

    YANG B, GAO WY, ZHANG YJ. Research ideas and methods of protein and peptides in animal medicine based on transcriptomics-proteomics-peptidomics integrated association analysis strategy[J]. Chin Tradit Herb Drugs, 2019, 50(5): 1033-1038.
    [17] SAFAVI-HEMAMI H, GAJEWIAK J, KARANTH S, et al. Specialized insulin is used for chemical warfare by fish-hunting cone snails[J]. Proc Natl Acad Sci USA, 2015, 112(6): 1743-1748.
    [18] CHEN ZQ, XI XP, LU YY, et al. In vitro activities of a novel antimicrobial peptide isolated from phyllomedusa tomopterna[J]. Microb Pathog, 2021, 153: 104795.
    [19] ZAI Y, XI X, YE Z, et al. Aggregation and its influence on the bioactivities of a novel antimicrobial peptide, temporin-PF, and its analogues[J]. Int J Mol Sci, 2021, 22(9): 4509.
    [20] CID-URIBE JI, MENESES EP, BATISTA CVF, et al. Dissecting toxicity: The venom gland transcriptome and the venom proteome of the highly venomous scorpion Centruroides limpidus (karsch, 1879)[J]. Toxins (Basel), 2019, 11(5): E247.
    [21] 刘睿, 赵明, 段金廒. 基于"蛋白质/肽组学-修饰组学"研究动物药功效物质基础的思路与方法[J]. 药学学报, 2020, 55(8): 1735-1743.

    LIU R, ZHAO M, DUAN JA. Ideas and strategies for investigating the bioactive constituents of animal derived traditional Chinese medicines based on integrated "proteomics/peptidomics-modifications" methods[J]. Acta Pharm Sin, 2020, 55(8): 1735-1743.
    [22] ZHANG RR, LI Y, XING XM. Comparative antler proteome of Sika Deer from different developmental stages[J]. Sci Rep, 2021, 11(1): 10484.
    [23] LIU CC, WU CJ, HSIAO YC, et al. Snake venom proteome of Protobothrops mucrosquamatus in Taiwan: Delaying venom-induced lethality in a rodent model by inhibition of phospholipase A 2 activity with varespladib[J]. J Proteomics, 2021, 234: 104084.
    [24] LIU R, WANG F, HUANG Q, et al. Available sustainable alternatives replace endangered animal horn based on their proteomic analysis and bio-effect evaluation[J]. Sci Rep, 2016, 6: 36027.
    [25] LIU R, HUANG Q, ZHU Z, et al. Further evidence for sustainable alternatives to replace threatened animal horn based on quantitative proteomic analysis[J]. Electrophoresis, 2018, 39(24): 3185-3190.
    [26] LIU R, ZHU ZH, QIAN DW, et al. Comparison of the peptidome released from keratins in Saiga antelope horn and goat horn under simulated gastrointestinal digestion[J]. Electrophoresis, 2019, 40(20): 2759-2766.
    [27] 阮班军, 代鹏, 王伟, 等. 蛋白质翻译后修饰研究进展[J]. 中国细胞生物学学报, 2014, 36(7): 1027-1037.

    RUAN BJ, DAI P, WANG W, et al. Progress on post-translational modifi cation of proteins[J]. Chin J Cell Biol, 2014, 36(7): 1027-1037.
    [28] 刘睿, 朱悦, 郑云枫, 等. 基于"多肽组-修饰组"比较分析鹿皮与鹿皮胶物质基础[J]. 药学学报, 2020, 55(8): 1882-1888.

    LIU R, ZHU Y, ZHENG YF, et al. Comparative analysis of chemical constituents of Deer hide and Deer hide gelatin by "peptidomics-modifications" methods[J]. Acta Pharm Sin, 2020, 55(8): 1882-1888.
    [29] 蒋梦彤, 黄潇正, 蔡朔, 等. 基于Label-free定量多肽组学的鹿角胶与鹿皮胶糖基化肽研究[J]. 中国中药杂志, 2021, 46(14): 3487-3493.

    JIANG MT, HUANG XZ, CAI S, et al. Label-free quantitative peptidomics-based analysis on glycopeptides in deerhorn gelatin and Deer-hide gelatin[J]. China J Chin Mater Med, 2021, 46(14): 3487-3493.
    [30] 刘睿, 蔡朔, 赵珂璇, 等. 鹿皮胶Ⅰ型胶原赖氨酸位点的羟基化与O-糖基化修饰分析[J]. 中国中药杂志, 2021, 46(3): 591-598.

    LIU R, CAI S, ZHAO KX, et al. Analysis of hydroxylation and O-glycosylation on lysine sites in Deer-hide gelatin[J]. China J Chin Mater Med, 2021, 46(3): 591-598.
    [31] 宋江宁. 蛋白质二硫键结构特征与序列关系的生物信息学研究[D]. 无锡: 江南大学, 2005.

    SONG JN. Bioinformatics studies on the relationship between disulfide structural feature and sequence in proteins[D]. Wuxi: Jiangnan University, 2005.
    [32] PENG C, HUANG Y, BIAN C, et al. The first Conus genome assembly reveals a primary genetic central dogma of conopeptides in C. betulinus[J]. Cell Discov, 2021, 7: 11.
    [33] 刘润哲, 宋俊科, 刘艾林, 等. 人工智能在基于配体和受体结构的药物筛选中的应用进展[J]. 药学学报, 2021, 56(8): 2136-2145.

    LIU RZ, SONG JK, LIU AL, et al. Progress on the application of artificial intelligence technology in ligand-based and receptor structure-based drug screening[J]. Acta Pharm Sin, 2021, 56(8): 2136-2145.
    [34] 杨文宇, 万德光, 杨鑫嵎. 虚拟筛选辅助揭示中药药效物质基础的思路与初步实践[J]. 中草药, 2011, 42(9): 1665-1672.

    YANG WY, WAN DG, YANG XY. Thinking and primary practice on discovery of pharmacodynamic material basis of Chinese materia medica assisted by virtual screening method[J]. Chin Tradit Herb Drugs, 2011, 42(9): 1665-1672.
    [35] LIU R, ZHOU L, ZHANG Y, et al. Rapid identification of dipeptidyl peptidase-IV (DPP-IV) inhibitory peptides from Ruditapes philippinarum hydrolysate[J]. Molecules, 2017, 22(10): 1714.
    [36] LIU R, ZHU YH, CHEN J, et al. Characterization of ACE inhibitory peptides from Mactra veneriformis hydrolysate by nano-liquid chromatography electrospray ionization mass spectrometry (Nano-LC-ESI-MS) and molecular docking[J]. Mar Drugs, 2014, 12(7): 3917-3928.
    [37] 李佳芸, 王欣之, 韦源青, 等. 基于网络药理学与分子对接研究马氏珍珠贝降糖活性肽[J]. 食品与发酵工业, 2022, 48(15): 176-184.

    LI JY, WANG XZ, WEI YQ, et al. Screening of potential anti-diabetic peptides from Pinctada martensii flesh based on network pharmacology and molecular docking techniques[J]. Food Ferment Ind, 2022, 48(15): 176-184.
    [38] LIU R, CHENG JM, WU H. Discovery of food-derived dipeptidyl peptidase IV inhibitory peptides: A review[J]. Int J Mol Sci, 2019, 20(3): 463.
    [39] 王天尧, 李剑锋. 深度学习在蛋白质结构预测中的应用及启示[J]. 高分子学报, 2022, 53(6): 581-591.

    WANG TY, LI JF. Application of deep learning in protein structure prediction and its inspirations[J]. Acta Polym Sin, 2022, 53(6): 581-591.
    [40] GAO X, DONG XQ, LI XX, et al. Prediction of disulfide bond engineering sites using a machine learning method[J]. Sci Rep, 2020, 10(1): 10330.
    [41] 中国中药65周年发展成就: 人工麝香的研制及产业化[J]. 中国现代中药, 2021, 23(2): 395.

    Development achievements of Chinese traditional medicine in the 65th anniversary-Development and industrialization of artificial musk[J]. Mod Chin Med, 2021, 23(2): 395.
    [42] 李兵, 谭树华, 吴梧桐. 水蛭素基因工程菌的培养[J]. 药物生物技术, 2002, 9(2): 79-82.

    LI B, TAN SH, WU WT. Cultivation of engineering bacteria producing hirudin[J]. Pharm Biotechnol, 2002, 9(2): 79-82.
    [43] 庾石山, 王晓良, 李勇, 等. 一种角蛋白BD-15、制法和其药物组合物与用途:

    CN112724224A[P]. 2021-04-30. YU SS, WANG XL, LI Y, et al. Keratin BD-15, preparation method, pharmaceutical composition and application thereof: CN112724224A[P]. 2021-04-30.
    [44] 夏扬, 胡玲玲, 陈姣, 等. 东亚钳蝎Na+通道毒素BmkNaTx12的基因克隆与重组表达[J]. 中国药科大学学报, 2017, 48(2): 220-226.

    XIA Y, HU LL, CHEN J, et al. Cloning and expression of recombinant BmkNaTx12, a new voltage-gated sodium channel from scorpion Buthus martensii Karsch[J]. J China Pharm Univ, 2017, 48(2): 220-226.
    [45] 杨金玲, 高丽丽, 朱平, 等. 蝎毒镇痛活性肽基因BmK AngM1的密码子优化及其真核表达分析[J]. 药学学报, 2012, 47(10): 1389-1393.

    YANG JL, GAO LL, ZHU P, et al. Codon optimization and eukaryotic expression analysis of the analgesic peptide gene BmK AngM1 from Buthus martensii Karsch[J]. Acta Pharm Sin, 2012, 47(10): 1389-1393.
    [46] 王磊, 曾夏芸, 强媛媛, 等. 芋螺毒素lt1c的重组表达及镇痛功能[J]. 中山大学学报(自然科学版), 2018, 57(2): 137-142.

    WANG L, ZENG XY, QIANG YY, et al. Recombinant expression and functional analysis of conotoxin lt1c[J]. Acta Sci Nat Univ Sunyatseni, 2018, 57(2): 137-142.
    [47] 邵婕, 潘娇, 瞿芳, 等. 蜘蛛多肽毒素JZTX-51和JZTX-26的重组表达和纯化[J]. 生物工程学报, 2018, 34(10): 1668-1678.

    SHAO J, PAN J, QU F, et al. Recombinant expression and purification of spider toxin, JZTX-51 and JZTX-26, from Chilobrachys jingzhao[J]. Chin J Biotechnol, 2018, 34(10): 1668-1678.
    [48] 赵丹. 少棘蜈蚣毒素的基因克隆、原核表达及纯化研究[D]. 长沙: 国防科学技术大学, 2015.

    ZHAO D. Cloning, prokaryotic expression and purification of toxins from centipede Scolopendra subspinipes mutilans[D]. Changsha: National University of Defense Technology, 2015.
    [49] LANCASTER MA, KNOBLICH JA. Organogenesis in a dish: Modeling development and disease using organoid technologies[J]. Science, 2014, 345(6194): 1247125.
    [50] 陶玉, 陈心怡, 俞清, 等. 胰岛类器官研究进展[J/OL]. 中国科学: 生命科学, 2022: 1-21. http://doi.org/10.1360/SSV-2022-0031.

    TAO Y, CHEN XY, YU Q, et al. Advances in islet organoids[J/OL]. Sci Sin Vitae, 2022: 1-21. http://doi.org/10.1360/SSV-2022-0031.
    [51] PUSCHHOF J, POST Y, BEUMER J, et al. Derivation of snake venom gland organoids for in vitro venom production[J]. Nat Protoc, 2021, 16(3): 1494-1510.
    [52] CHOI WS, KIM JH, AHN CB, et al. Development of a multi-layer skin substitute using human hair keratinic extract-based hybrid 3D printing[J]. Polymers, 2021, 13(16): 2584.
    [53] OULTON R. Saving rhinos with 3D printed horns[J]. Nat Biotechnol, 2015, 33(7): 683.
    [54] MULLER C, WANG ZJ, HAMANN M, et al. Life without blood: Molecular and functional analysis of hirudins and hirudin-like factors of the Asian non-hematophagous leech Whitmania pigra[J]. J Thromb Haemost, 2022, 20(8): 1808-1817.
    [55] SUN Y, WANG BC, PEI JL, et al. Molecular dynamic and pharmacological studies on protein-engineered hirudin variants of Hirudinaria manillensis and Hirudo medicinalis[J]. Br J Pharmacol, 2022, 179(14): 3740-3753.
    [56] MüLLER C, HAASE M, LEMKE S, et al. Hirudins and hirudin-like factors in Hirudinidae: Implications for function and phylogenetic relationships[J]. Parasitol Res, 2017, 116(1): 313-325.
    [57] 叶文才, 张冬梅, 陈立新, 等. 基于蟾毒内酯类化合物研究肿瘤细胞凋亡和自噬的作用机制[C]//济南: 2013年全国药物化学学术会议暨第四届中英药物化学学术会议会议指南, 2013: 81.

    YE WC, ZHANG DM, CHEN LX, et al. On the mechanism of apoptosis and autophagy in tumor cells based on bufalolactone compounds[C]//Jinan: Conference Guide of 2013 Chinese Medicinal Chemistry Symposium and 4th CPA-RSC Symposium on Medicinal Chemistry, 2013: 81.
    [58] 张琦, 王甜甜, 汪磊, 等. 华蟾毒精靶向KATNB1抑制肿瘤细胞微管形成和有丝分裂[J]. 药学学报, 2022, 57(8): 2334-2341.

    ZHANG Q, WANG TT, WANG L, et al. Cinobufagin disrupts mitosis and microtubule polymerization via targeting KATNB1 in cancer cells[J]. Acta Pharm Sin, 2022, 57(8): 2334-2341.
    [59] LI J, CASTEELS T, FROGNE T, et al. Artemisinins target GABAA receptor signaling and impair α cell identity[J]. Cell, 2017, 168(1/2): 86-100.
    [60] LIU L, HUA YP, WANG D, et al. A sesquiterpene lactone from a medicinal herb inhibits proinflammatory activity of TNF-α by inhibiting ubiquitin-conjugating enzyme UbcH5[J]. Chem Biol, 2014, 21(10): 1341-1350.
    [61] DONG T, LI C, WANG X, et al. Ainsliadimer A selectively inhibits IKKα/β by covalently binding a conserved cysteine[J]. Nat Commun, 2015, 6: 6522.
    [62] WANG J, TAN XF, NGUYEN VS, et al. A quantitative chemical proteomics approach to profile the specific cellular targets of andrographolide, a promising anticancer agent that suppresses tumor metastasis[J]. Mol Cell Proteomics, 2014, 13(3): 876-886.
    [63] DAI JY, LIANG K, ZHAO S, et al. Chemoproteomics reveals baicalin activates hepatic CPT1 to ameliorate diet-induced obesity and hepatic steatosis[J]. Proc Natl Acad Sci USA, 2018, 115(26): E5896-E5905.
    [64] PAI MY, LOMENICK B, HWANG H, et al. Drug affinity responsive target stability (DARTS) for small-molecule target identification[J]. Methods Mol Biol, 2015, 1263: 287-298.
    [65] LV Q, XING Y, LIU J, et al. Lonicerin targets EZH2 to alleviate ulcerative colitis by autophagy-mediated NLRP3 inflammasome inactivation[J]. Acta Pharm Sin B, 2021, 11(9): 2880-2899.
    [66] ZHU YY, WAN N, SHAN XN, et al. Celastrol targets adenylyl cyclase-associated protein 1 to reduce macrophages-mediated inflammation and ameliorates high fat diet-induced metabolic syndrome in mice[J]. Acta Pharm Sin B, 2021, 11(5): 1200-1212.
    [67] CHAN JN, VUCKOVIC D, SLENO L, et al. Target identification by chromatographic co-elution: Monitoring of drug-protein interactions without immobilization or chemical derivatization[J]. Mol Cell Proteomics, 2012, 11(7): M111.016642.
    [68] 李懿, 刘夏进, 宿树兰, 等. 模式生物斑马鱼在中药活性筛选和毒性评价中的应用进展与展望[J]. 南京中医药大学学报, 2020, 36(5): 715-720.

    LI Y, LIU XJ, SU SL, et al. Application progress and prospect of model organism zebrafish in activity screening and toxicity evaluation of traditional Chinese medicine[J]. J Nanjing Univ Tradit Chin Med, 2020, 36(5): 715-720.
    [69] 张友刚, 刘发生, 孔浩天, 等. 基于斑马鱼模型的新阿胶对化疗诱导免疫损伤的保护作用[J]. 中华中医药杂志, 2021, 36(9): 5550-5555.

    ZHANG YG, LIU FS, KONG HT, et al. Protective effect of Pig-hide Gelatin on chemotherapy-induced immune injury based on the zebrafish model[J]. China J Tradit Chin Med Pharm, 2021, 36(9): 5550-5555.
    [70] 安苗青, 徐雅囡, 卓倩婷, 等. 龟鹿二仙胶对秀丽隐杆线虫体内抗衰老作用研究[J]. 广州中医药大学学报, 2022, 39(8): 1863-1870.

    AN MQ, XU YN, ZHUO QT, et al. Study on the anti-aging effect of Guilu Erxian Jiao on Caenorhabditis elegans in vivo[J]. J Guangzhou Univ Tradit Chin Med, 2022, 39(8): 1863-1870.
    [71] 刘春红, 汤燚聪, 高瑜培, 等. 鹿茸乙醇提取物对秀丽隐杆线虫抗衰老的作用[J]. 食品工业科技, 2021, 42(7): 354-359.

    LIU CH, TANG YC, GAO YP, et al. Anti-aging effect of ethanol extract of velvet antler on Caenorhabditis elegans[J]. Sci Technol Food Ind, 2021, 42(7): 354-359.
    [72] 李振旺, 李云飞, 关红霞, 等. 马鹿角对秀丽隐杆线虫衰老的影响及抗氧化机制研究[J]. 中药药理与临床, 2020, 36(4): 136-140.

    LI ZW, LI YF, GUAN HX, et al. Anti aging effect and anti-oxidant property on C. elegans of red Deer (Cervus elaphus) antler[J]. Pharmacol Clin Chin Mater Med, 2020, 36(4): 136-140.
    [73] 贾熙华, 曹诚. 秀丽隐杆线虫在医药学领域的应用和进展[J]. 药学学报, 2009, 44(7): 687-694.

    JIA XH, CAO C. Caenorhabditis elegans: A powerful tool for drug discovery[J]. Acta Pharm Sin, 2009, 44(7): 687-694.
    [74] 韩玉婷, 许博文, 李羽童, 等. 模式动物果蝇的基因调控前沿技术[J]. 遗传, 2022, 44(1): 3-15.

    HAN YT, XU BW, LI YT, et al. The cutting edge of gene regulation approaches in model organism Drosophila[J]. Hereditas, 2022, 44(1): 3-15.
    [75] 史晋源, 钟浩, 王倩倩, 等. 甲鱼肽对果蝇寿命及其抗氧化活性的影响[J]. 食品工业科技, 2021, 42(11): 321-327.

    SHI JY, ZHONG H, WANG QQ, et al. Effect of soft-shelled Turtle peptide on the lifespan and antioxidant activities of Drosophila melanogaster[J]. Sci Technol Food Ind, 2021, 42(11): 321-327.
    [76] 姚辉, 张辉, 陈士林. 《中国药典》收载动物药材DNA条形码鉴定研究策略与方法[J]. 中国现代中药, 2019, 21(9): 1137-1146.

    YAO H, ZHANG H, CHEN SL. Strategies and methods of DNA barcoding medicinal animals in Chinese pharmacopoeia[J]. Mod Chin Med, 2019, 21(9): 1137-1146.
    [77] HEBERT PDN, RATNASINGHAM S, DEWAARD JR. Barcoding animal life: Cytochrome c oxidase subunit 1 divergences among closely related species[J]. Proc Biol Sci, 2003, 270(S1): S96-S99.
    [78] YAO H, SONG JY, LIU C, et al. Use of ITS2 region as the universal DNA barcode for plants and animals[J]. PLoS ONE, 2010, 5(10): e13102.
    [79] 陈士林, 郭宝林, 张贵君, 等. 中药鉴定学新技术新方法研究进展[J]. 中国中药杂志, 2012, 37(8): 1043-1055.

    CHEN SL, GUO BL, ZHANG GJ, et al. Advances of studies on new technology and method for identifying traditional Chinese medicinal materials[J]. China J Chin Mater Med, 2012, 37(8): 1043-1055.
    [80] LUO JY, YAN D, ZHANG D, et al. Application of 12S rRNA gene for the identification of animal-derived drugs[J]. J Pharm Pharm Sci, 2011, 14(3): 358-367.
    [81] 程显隆, 李文杰, 张小龙, 等. UPLC-QTOF-MS结合主成分分析法用于龟甲胶、鹿角胶中添加牛皮源成分的检测研究[J]. 药物分析杂志, 2012, 32(6): 931-935.

    CHENG XL, LI WJ, ZHANG XL, et al. Identification of bovine-hide gelatin from glue of tortoise shell and Deer-horn gelatin by UPLC-QTOF-MS and principal component analysis[J]. Chin J Pharm Anal, 2012, 32(6): 931-935.
    [82] LI X, SHI F, GONG L, et al. Species-specific identification of collagen components in Colla corii asini using a nano-liquid chromatography tandem mass spectrometry proteomics approach[J]. Int J Nanomedicine, 2017, 12: 4443-4454.
    [83] LIU R, HUANG Y, XU HK, et al. A strategy for identifying species-specific peptide biomarkers in Deer-hide gelatin using untargeted and targeted mass spectrometry approaches[J]. Anal Chimica Acta, 2019, 1092: 32-41.
    [84] CAI S, JIANG MT, ZHAO KX, et al. A quantitative strategy of ultrasound-assisted digestion combined UPLC-MS/MS for rapid identifying species-specific peptide markers in the application of food gelatin authentication[J]. LWT, 2021, 147: 111590.
    [85] 刘睿, 赵明, 刘晓, 等. 超高效液相色谱-串联质谱法检测水牛角特征肽[J]. 中国中药杂志, 2022, 47(5): 1279-1285.

    LIU R, ZHAO M, LIU X, et al. Identification of specific peptides from Bubali Cornu by ultra-performance liquid chromatography-tandem mass spectrometry[J]. China J Chin Mater Med, 2022, 47(5): 1279-1285.
    [86] HAN SY, ZHAO KX, CAI S, et al. Discovery of peptide biomarkers by label-free peptidomics for discrimination of horn gelatin and hide gelatin from Cervus nippon Temminck[J]. Food Chem, 2021, 363: 130347.
    [87] 刘睿, 段金廒, 钱大玮, 等. 一种牛角特征肽段及其检测方法:

    CN114395014A[P]. 2022-04-26. LIU R, DUAN JA, QIAN DW, et al. Ox horn characteristic peptide fragment and detection method thereof: CN114395014A[P]. 2022-04-26.
    [88] HAN SY, YAN ZY, HUANG XZ, et al. Response boosting-based approach for absolute quantification of gelatin peptides using LC-MS/MS[J]. Food Chem, 2022, 390: 133111.
    [89] 赵鸿鹏, 许浚, 张洪兵, 等. 基于质量传递与溯源的中药质量标志物(Q-Marker)的发现策略及应用[J]. 中草药, 2021, 52(9): 2557-2565.

    ZHAO HP, XU J, ZHANG HB, et al. Discovery strategy and application of quality markers of traditional Chinese medicine based on quality transitivity and traceability[J]. Chin Tradit Herb Drugs, 2021, 52(9): 2557-2565.
    [90] 吴晓淳, 贾晓斌, 马维坤, 等. 珍稀濒危动物药材人工替代研究与产业化[J/OL]. 中国中药杂志, 2022: 1-11. https://kns.cnki.net/kcms/detail/11.2272.R.20220721.1907.004.html.

    WU XC, JIA XB, MA WK, et al. Research and industrialization of artificial substitution of rare and endangered animal medicinal materials[J/OL]. China J Chin Mater Med, 2022: 1-11. https://kns.cnki.net/kcms/detail/11.2272.R.20220721.1907.004.html.
    [91] 张星贤, 阮洁, 马占强. 我国药用昆虫资源研究的历史沿革与现状初探[J]. 生物加工过程, 2019, 17(6): 615-622.

    ZHANG XX, RUAN J, MA ZQ. Research on history and present situation of medicinal insect resources in China[J]. Chin J Bioprocess Engineer, 2019, 17(6): 615-622.
  • 加载中
图(2)
计量
  • 文章访问数:  481
  • HTML全文浏览量:  79
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-15
  • 网络出版日期:  2022-10-25
  • 发布日期:  2022-10-10

目录

    /

    返回文章
    返回