留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强骨合剂通过Wnt3a/β-catenin/VEGF信号通路促进血管生成改善围绝经期大鼠骨质疏松的研究

王雨辰 芮立宁 贾川 俞伟忠

王雨辰, 芮立宁, 贾川, 俞伟忠. 强骨合剂通过Wnt3a/β-catenin/VEGF信号通路促进血管生成改善围绝经期大鼠骨质疏松的研究[J]. 南京中医药大学学报, 2022, 38(9): 819-826. doi: 10.14148/j.issn.1672-0482.2022.0819
引用本文: 王雨辰, 芮立宁, 贾川, 俞伟忠. 强骨合剂通过Wnt3a/β-catenin/VEGF信号通路促进血管生成改善围绝经期大鼠骨质疏松的研究[J]. 南京中医药大学学报, 2022, 38(9): 819-826. doi: 10.14148/j.issn.1672-0482.2022.0819
WANG Yu-chen, RUI Li-ning, JIA Chuan, YU Wei-zhong. Qianggu Decoction Promotes Angiogenesis through Wnt3a/β-catenin/VEGF Pathway to Improve Osteoporosis in Perimenopausal Rats[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(9): 819-826. doi: 10.14148/j.issn.1672-0482.2022.0819
Citation: WANG Yu-chen, RUI Li-ning, JIA Chuan, YU Wei-zhong. Qianggu Decoction Promotes Angiogenesis through Wnt3a/β-catenin/VEGF Pathway to Improve Osteoporosis in Perimenopausal Rats[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(9): 819-826. doi: 10.14148/j.issn.1672-0482.2022.0819

强骨合剂通过Wnt3a/β-catenin/VEGF信号通路促进血管生成改善围绝经期大鼠骨质疏松的研究

doi: 10.14148/j.issn.1672-0482.2022.0819
基金项目: 

常州市重点研发计划 CJ20210018

常州市武进区科技发展计划项目 WS202002

常州市卫生健康青苗人才培养工程 CZQM2020121

详细信息
    通讯作者:

    王雨辰, 男,主治医生, 主要从事关节、运动损伤研究, E-mail: wyc0928@163.com

  • 中图分类号: R285.5

Qianggu Decoction Promotes Angiogenesis through Wnt3a/β-catenin/VEGF Pathway to Improve Osteoporosis in Perimenopausal Rats

  • 摘要:   目的  探讨强骨合剂对围绝经期骨质疏松SD大鼠的疗效及其可能的作用机制。  方法  采用HPLC建立强骨合剂标准指纹图谱。将50只SD大鼠随机分为假手术组、模型组、雌二醇组、强骨合剂高剂量(12 g · kg-1)组、低剂量(6 g · kg-1)组, 每组10只。双侧卵巢切除法制备围绝经期大鼠骨质疏松模型, 分别灌胃给予生理盐水,雌二醇,高、低剂量强骨合剂, 连续给药30 d。记录大鼠体质量和子宫质量, 检测大鼠骨力学相关指标, 股骨HE染色观察成骨细胞量及骨小梁面积。qPCR检测Wnt3a、β-catenin、VEGF、OPG mRNA表达水平; 免疫荧光检测VEGFR-2、CD31, 评价血管生成情况; Western blot检测股骨组织Wnt3a、p-GSK3β、VEGF、β-catenin、Lamin蛋白表达情况。  结果  10批次提取的强骨合剂指纹图谱相似度均大于0.9, 表明10批样品质量稳定。与模型组比较, 雌二醇组,强骨合剂高、低剂量组可显著改善大鼠子宫指数、骨密度、骨力学性能指标(P < 0.05, P < 0.01), 明显改善骨微结构, 提高股骨组织中Wnt3a、β-catenin、VEGF、OPG mRNA水平(P < 0.05, P < 0.01), 以及VEGF、CD31、Wnt3a、p-GSK3β、β-catenin、Lamin蛋白表达水平(P < 0.05, P < 0.01)。  结论  强骨合剂可能通过Wnt3a/β-catenin信号通路调节VEGF表达, 促进血管生成, 从而提高大鼠骨密度, 改善骨组织形态, 进而发挥抗骨质疏松的作用。

     

  • 图  1  10批强骨合剂样品(S1~S10)的HPLC指纹图谱(A) 及其共有模式(B)

    Figure  1.  HPLC fingerprints and common patterns of 10 batches of Qianggu mixture samples (S1-S10)

    图  2  各组大鼠体质量(A)、子宫指数(B)、骨密度(C)以及股骨生物力学指标(D~F)测定结果比较

    注:与假手术组比较,##P < 0.01;与模型组比较,*P < 0.05, **P < 0.01。x±sn=10。

    Figure  2.  Body weight (A), uterine index (B), bone density (C) and biomechanical indexes(D-F) of rats in all groups

    图  3  各组大鼠股骨组织病理形态(HE, ×20)

    Figure  3.  Histopathological morphology of femoral bone tissue in each group of rats (HE, ×20)

    图  4  免疫荧光检测各组大鼠股骨组织中VEGFR-2和CD31的表达

    注:与假手术组比较,##P < 0.01;与模型组比较,**P < 0.01。x±sn=10。

    Figure  4.  The expression of VEGFR-2 and CD31 detected by immunofluorescence in femoral bone tissue of rats

    图  5  各组大鼠股骨组织Wnt3a、β-catenin、VEGF、OPG mRNA水平比较

    注:与假手术组比较,##P < 0.01;与模型组比较,*P < 0.05, **P < 0.01。x±sn=10。

    Figure  5.  Wnt3a, β-catenin, VEGF and OPG mRNA in femoral bone tissue of rats in each group

    图  6  各组大鼠股骨组织中Wnt3a/β-catenin/VEGF信号通路相关蛋白的表达水平

    注:与假手术组比较,##P < 0.01;与模型组比较,*P < 0.05, **P < 0.01。x±sn=10。

    Figure  6.  Expression of Wnt3a/β-catenin/VEGF signaling pathway-related proteins in femoral bone tissue of rats in each group

  • [1] 马远征, 王以朋, 刘强, 等. 中国老年骨质疏松症诊疗指南(2018)[J]. 中国实用内科杂志, 2019, 39(1): 38-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SYNK201901012.htm

    MA YZ, WANG YP, LIU Q, et al. 2018 China guideline for diagnosis and treatment of senile osteoporosis[J]. Chin J Pract Intern Med, 2019, 39(1): 38-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SYNK201901012.htm
    [2] 中华人民共和国国家统计局. 中国统计年鉴2015[M]. 北京: 中国统计出版社, 2015.

    National Bureau of Statistics, PRC. China Statistical Yearbook 2015[M]. Beijing: China statistical publishing house, 2015.
    [3] Management of osteoporosis in postmenopausal women: 2010 position statement of the North American Menopause Society[J]. Menopause, 2010, 17(1): 25-56.
    [4] 陈芳, 张宜, 徐立. 中西医治疗绝经后骨质疏松症的研究进展[J]. 医药导报, 2021, 40(9): 1216-1220. https://www.cnki.com.cn/Article/CJFDTOTAL-YYDB202109013.htm

    CHEN F, ZHANG Y, XU L. Research progress of traditional Chinese and western medicine in the treatment of postmenopausal osteoporosis[J]. Herald Med, 2021, 40(9): 1216-1220. https://www.cnki.com.cn/Article/CJFDTOTAL-YYDB202109013.htm
    [5] 闫慧明, 郭静, 安燕, 等. 分子信号通路在骨质疏松症发生机制中的研究进展[J]. 中国骨质疏松杂志, 2016, 22(10): 1336-1340. doi: 10.3969/j.issn.1006-7108.2016.10.024

    YAN HM, GUO J, AN Y, et al. Research progress in molecular signaling pathways on the pathogenesis of osteoporosis[J]. Chin J Osteoporos, 2016, 22(10): 1336-1340. doi: 10.3969/j.issn.1006-7108.2016.10.024
    [6] 王林, 李平, 贾海峰, 等. 兔骨缺损ESW治疗后成骨细胞中VEGF的表达[J]. 中国当代医药, 2009, 16(13): 23-24. doi: 10.3969/j.issn.1674-4721.2009.13.012

    WANG L, LI P, JIA HF, et al. Expression of VEGF on the osteoblast after extracorporeal shock wave (ESW) for the treatment of rabbits bone defect[J]. China Mod Med, 2009, 16(13): 23-24. doi: 10.3969/j.issn.1674-4721.2009.13.012
    [7] XU H, YANG JJ, WANG CH, et al. Effect of Wnt/β-catenin signal pathway on of matrix metalloproteinase-7 and vascular endothelial growth factor gene expressions in endometriosis[J]. Clin Exp Obstet Gynecol, 2016, 43(4): 573-577. doi: 10.12891/ceog3053.2016
    [8] LI ZN, YUAN GX, LIN XX, et al. Dehydrocostus lactone (DHC) suppresses estrogen deficiency-induced osteoporosis[J]. Biochem Pharmacol, 2019, 163: 279-289. doi: 10.1016/j.bcp.2019.02.002
    [9] DU D, ZHOU ZB, ZHU L, et al. TNF-α suppresses osteogenic differentiation of MSCs by accelerating P2Y2 receptor in estrogen-deficiency induced osteoporosis[J]. Bone, 2018, 117: 161-170. doi: 10.1016/j.bone.2018.09.012
    [10] PARK E, LIM E, YEO S, et al. Anti-menopausal effects of Cornus officinalis and Ribes fasciculatumextract in vitro and in vivo[J]. Nutrients, 2020, 12(2): E369. doi: 10.3390/nu12020369
    [11] FAIENZA MF, VENTURA A, MARZANO F, et al. Postmenopausal osteoporosis: The role of immune system cells[J]. Clin Dev Immunol, 2013, 2013: 575936.
    [12] STERN AR, YAO XM, WANG Y, et al. Effect of osteoporosis treatment agents on the cortical bone osteocyte microenvironment in adult estrogen-deficient, osteopenic rats[J]. Bone Rep, 2018, 8: 115-124. doi: 10.1016/j.bonr.2018.02.005
    [13] LEVIN VA, JIANG X, KAGAN R. Estrogen therapy for osteoporosis in the modern era[J]. Osteoporos Int, 2018, 29(5): 1049-1055. doi: 10.1007/s00198-018-4414-z
    [14] ZHU SY, DENG Y, WANG YF, et al. Bone protection for early menopausal women in China: Standard or half-dose estrogen with progestin?A one-year prospective randomized trail[J]. Gynecol Endocrinol, 2019, 35(2): 165-169. doi: 10.1080/09513590.2018.1505849
    [15] TAHAMI M, HADDAD B, ABTAHIAN A, et al. Potential role of local estrogen in enhancement of fracture healing: Preclinical study in rabbits[J]. Arch Bone Jt Surg, 2016, 4(4): 323-329.
    [16] SANTEN RJ, SIMPSON E. History of estrogen: Its purification, structure, synthesis, biologic actions, and clinical implications[J]. Endocrinology, 2018, 160(3): 605-625.
    [17] NASOMYONT N, HORNUNG LN, GORDON CM, et al. Outcomes following intravenous bisphosphonate infusion in pediatric patients: A 7-year retrospective chart review[J]. Bone, 2019, 121: 60-67. doi: 10.1016/j.bone.2019.01.003
    [18] 杨茜, 张毅, 张元琛, 等. 强骨合剂联合西药治疗糖尿病骨质疏松症临床观察[J]. 宁夏医学杂志, 2015, 37(3): 281-283. https://www.cnki.com.cn/Article/CJFDTOTAL-NXYX201503042.htm

    YANG X, ZHANG Y, ZHANG YC, et al. Clinical observation of qianggu mixture combined with western medicine in treating diabetic osteoporosis[J]. Ningxia Med J, 2015, 37(3): 281-283. https://www.cnki.com.cn/Article/CJFDTOTAL-NXYX201503042.htm
    [19] 鄂远. 强骨合剂治疗糖尿病合并骨质疏松症的临床观察[J]. 糖尿病新世界, 2018, 21(20): 93-94. https://www.cnki.com.cn/Article/CJFDTOTAL-TNBX201820047.htm

    ER Y. Clinical observation on treatment of diabetes mellitus with osteoporosis with strong bone mixture[J]. Diabetes New World, 2018, 21(20): 93-94. https://www.cnki.com.cn/Article/CJFDTOTAL-TNBX201820047.htm
    [20] 王雨辰, 刘百伟, 李云峰, 等. 强骨合剂治疗肾虚血瘀型骨质疏松症的临床研究[J]. 中医药导报, 2016, 22(23): 94-95, 98. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZB201623031.htm

    WANG YC, LIU BW, LI YF, et al. Clinical research on kidney-deficiency and blood-stasis type osteoporosis by qianggu heji[J]. Guid J Tradit Chin Med Pharm, 2016, 22(23): 94-95, 98. https://www.cnki.com.cn/Article/CJFDTOTAL-HNZB201623031.htm
    [21] 王雨辰, 李云峰, 吴小伟, 等. 强骨合剂治疗肾虚血瘀型原发性骨质疏松症[J]. 长春中医药大学学报, 2015, 31(6): 1215-1217. https://www.cnki.com.cn/Article/CJFDTOTAL-CZXX201506043.htm

    WANG YC, LI YF, WU XW, et al. Treatment of kidney-deficiency and blood-stasis type osteoporosis with Qianggu Decoction[J]. J Changchun Univ Chin Med, 2015, 31(6): 1215-1217. https://www.cnki.com.cn/Article/CJFDTOTAL-CZXX201506043.htm
    [22] 李万森. 强骨合剂治疗糖尿病骨质疏松症疗效观察[J]. 山东医药, 2009, 49(35): 91-92. doi: 10.3969/j.issn.1002-266X.2009.35.040

    LI WS. Observation on therapeutic effect of Qianggu mixture on diabetic osteoporosis[J]. Shandong Med J, 2009, 49(35): 91-92. doi: 10.3969/j.issn.1002-266X.2009.35.040
    [23] LEUCHT P, HELMS JA. Wnt signaling: An emerging target for bone regeneration[J]. J Am Acad Orthop Surg, 2015, 23(1): 67-68. doi: 10.5435/JAAOS-23-01-67
    [24] BOONANANTANASARN K, LEE HL, BAEK K, et al. EGF inhibits Wnt/β-catenin-induced osteoblast differentiation by promoting β-catenin degradation[J]. J Cell Biochem, 2015, 116(12): 2849-2857. doi: 10.1002/jcb.25231
    [25] REYA T, CLEVERS H. Wnt signalling in stem cells and cancer[J]. Nature, 2005, 434(7035): 843-850. doi: 10.1038/nature03319
    [26] KATO M, PATEL MS, LEVASSEUR R, et al. Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor[J]. J Cell Biol, 2002, 157(2): 303-314. doi: 10.1083/jcb.200201089
    [27] GONG YQ, SLEE RB, FUKAI NM, et al. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development[J]. Cell, 2001, 107(4): 513-523. doi: 10.1016/S0092-8674(01)00571-2
    [28] 王燕, 刘岩, 马剑侠, 等. Wnt/LRP5/β-catenin信号通路在绝经后骨质疏松发病中的作用[J]. 中华妇产科杂志, 2011, 46(10): 769-772. doi: 10.3760/cma.j.issn.0529-567x.2011.10.012

    WANG Y, LIU Y, MA JX, et al. Effect of the Wnt/LRP5/β-catenin signaling pathway on the pathogenesis of postmenopausal osteoporosis[J]. Chin J Obstet Gynecol, 2011, 46(10): 769-772. doi: 10.3760/cma.j.issn.0529-567x.2011.10.012
    [29] MILLER JR. The wnts[J]. Genome Biol, 2002, 3(1): 3001.
    [30] NUSSE R. Wnt signaling in disease and in development[J]. Cell Res, 2005, 15(1): 28-32. doi: 10.1038/sj.cr.7290260
    [31] MACDONALD BT, TAMAI K, HE X. Wnt/beta-catenin signaling: Components, mechanisms, and diseases[J]. Dev Cell, 2009, 17(1): 9-26. doi: 10.1016/j.devcel.2009.06.016
    [32] LICHTLEN P, LAM TT, NORK TM, et al. Relative contribution of VEGF and TNF-α in the cynomolgus laser-induced CNV model: Comparing the efficacy of bevacizumab, adalimumab, and ESBA105[J]. Invest Ophthalmol Vis Sci, 2010, 51(9): 4738-4745. doi: 10.1167/iovs.09-4890
    [33] HU Y, CHEN Y, LIN MK, et al. Pathogenic role of the Wnt signaling pathway activation in laser-induced choroidal neovascularization[J]. Invest Ophthalmol Vis Sci, 2013, 54(1): 141-154. doi: 10.1167/iovs.12-10281
    [34] KATOH Y, KATOH M. Comparative integromics on VEGF family members[J]. Int J Oncol, 2006, 28(6): 1585-1589.
    [35] ZHANG X, GASPARD JP, CHUNG DC. Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia[J]. Cancer Res, 2001, 61(16): 6050-6054.
    [36] WANG Y, SANG AM, ZHU MH, et al. Tissue factor induces VEGF expression via activation of the Wnt/β-catenin signaling pathway in ARPE-19 cells[J]. Mol Vis, 2016, 22: 886-897.
  • 加载中
图(6)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  20
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-22
  • 网络出版日期:  2022-09-19
  • 发布日期:  2022-09-10

目录

    /

    返回文章
    返回