留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄芪汤调节TLR4/NF-κB信号通路改善高糖诱导足细胞损伤的研究

芮蓉 陈瑛 朱冰冰 曹爱丽 王浩 王利

芮蓉, 陈瑛, 朱冰冰, 曹爱丽, 王浩, 王利. 黄芪汤调节TLR4/NF-κB信号通路改善高糖诱导足细胞损伤的研究[J]. 南京中医药大学学报, 2022, 38(7): 607-614. doi: 10.14148/j.issn.1672-0482.2022.0607
引用本文: 芮蓉, 陈瑛, 朱冰冰, 曹爱丽, 王浩, 王利. 黄芪汤调节TLR4/NF-κB信号通路改善高糖诱导足细胞损伤的研究[J]. 南京中医药大学学报, 2022, 38(7): 607-614. doi: 10.14148/j.issn.1672-0482.2022.0607
RUI Rong, CHEN Ying, ZHU Bing-bing, CAO Ai-li, WANG Hao, WANG Li. Huangqi Decoction Regulates TLR4/NF-κB Pathway to Improve High Glucose-Induced Podocyte Injury[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(7): 607-614. doi: 10.14148/j.issn.1672-0482.2022.0607
Citation: RUI Rong, CHEN Ying, ZHU Bing-bing, CAO Ai-li, WANG Hao, WANG Li. Huangqi Decoction Regulates TLR4/NF-κB Pathway to Improve High Glucose-Induced Podocyte Injury[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(7): 607-614. doi: 10.14148/j.issn.1672-0482.2022.0607

黄芪汤调节TLR4/NF-κB信号通路改善高糖诱导足细胞损伤的研究

doi: 10.14148/j.issn.1672-0482.2022.0607
基金项目: 

国家自然科学基金青年科学基金项目 81803921

上海中医药大学高峰造尖行动计划团队-高峰高原创新团队 15-DX-03GD

上海中医药大学附属普陀医院探索类科研项目 2020360A

上海市普陀区卫生健康系统科技创新项目 ptkwws202001

上海市医学重点专科建设项目 ZK2019A12

详细信息
    作者简介:

    芮蓉, 女, 硕士研究生, E-mail: 1247689105@qq.com

    通讯作者:

    王利, 女, 副研究员, 主要从事足细胞损伤的机制研究, E-mail: wanglitcm2007@163.com

  • 中图分类号: R285.5

Huangqi Decoction Regulates TLR4/NF-κB Pathway to Improve High Glucose-Induced Podocyte Injury

  • 摘要:   目的  探讨黄芪汤对高糖诱导足细胞损伤的作用及机制。  方法  体外培养人足细胞, 采用30 mmol·L-1葡萄糖干预24 h诱导足细胞损伤, 分别设置对照组、模型组、黄芪汤低浓度组(10 μg·mL-1)、黄芪汤中浓度组(30 μg·mL-1)和黄芪汤高浓度组(100 μg·mL-1)。采用CCK-8法检测细胞增殖能力, 划痕实验检测细胞迁移能力,qPCR法检测TNF-α、IL-6等炎症因子mRNA表达, ELISA法检测足细胞上清TNF-α、IL-6的含量,Western blot法检测足细胞TLR4、NF-κB、p-NF-κB、TNF-α及IL-6蛋白表达。  结果  与对照组比较, 模型组细胞划痕愈合率明显降低(P < 0.01),足细胞中TNF-α、IL-6、CCL24 mRNA表达水平,上清液中TNF-α、IL-6的含量和TLR4、p-NF-κB/NF-κB、TNF-α及IL-6蛋白表达均显著增加(P < 0.05,P < 0.01)。与模型组相比, 黄芪汤组细胞划痕率明显升高(P < 0.01),足细胞中TNF-α、IL-6的含量和mRNA表达,以及TLR4、p-NF-κB/NF-κB、TNF-α、IL-6蛋白表达均显著减少(P < 0.05, P < 0.01)。  结论  黄芪汤能有效减轻高糖对人足细胞的炎症损伤, 增强细胞增殖、迁移能力, 抑制细胞凋亡, 其机制可能与抑制TLR4/NF-κB信号通路、下调炎症因子的表达有关。

     

  • 图  1  黄芪汤对足细胞迁移能力的影响

    注: 与对照组比较, ##P < 0.01;与模型组比较, **P < 0.01。x±s, n=3。

    Figure  1.  Effect of Huangqi Decoction on the migration ability of podocyte

    图  2  黄芪汤对足细胞炎症因子mRNA表达的影响

    注: 与对照组比较, #P < 0.05, ##P < 0.01;与模型组比较, **P < 0.01。x±s, n=3。

    Figure  2.  Effect of Huangqi Decoction on the mRNA fold change of podocyte inflammatory cytokine

    图  3  黄芪汤对足细胞上清液中炎症因子水平的影响

    注: 与对照组比较, ##P < 0.01;与模型组比较, **P < 0.01。x±s, n=3。

    Figure  3.  Effect of Huangqi Decoction on the levels of inflammatory cytokine in the supernatant of podocyte

    图  4  黄芪汤对足细胞中炎症因子蛋白表达的影响

    注: 与对照组比较, ##P < 0.01;与模型组比较, *P < 0.05, **P < 0.01。x±s, n=3。

    Figure  4.  Effect of Huangqi Decoction on the protein expression of podocyte inflammatory cytokine

    图  5  黄芪汤对足细胞中TLR4、NF-κB蛋白表达的影响

    注: 与对照组比较, ##P < 0.01;与模型组比较, **P < 0.01。x±s, n=3。

    Figure  5.  Effect of Huangqi Decoction on the protein expression of TLR4 and NF-κB in podocyte

    表  1  细胞炎症因子引物序列

    Table  1.   Cellular inflammatory factor primer sequence

    引物名称 上游引物 下游引物
    β-actin 5'-GAAGTGTGACGTGGACATCC-3' 5'-CCGATCCACACGGAGTACTT-3'
    分泌型磷蛋白1(SPP1) 5'-CTCCATTGACTCGAACGACTC-3' 5'-CAGGTCTGCGAAACTTCTTAGAT-3'
    IL-1α 5'-TGGTAGTAGCAACCAACGGGA-3' 5'-ACTTTGATTGAGGGCGTCATTC-3'
    IL-1β 5'-CCTGTCCTGCGTGTTGAAAGA-3' 5'-GGGAACTGGGCAGACTCAAA-3'
    IL-6 5'-ACTCACCTCTTCAGAACGAATTG-3' 5'-CCATCTTTGGAAGGTTCAGGTTG-3'
    IL-10 5'-TCAAGGCGCATGTGAACTCC-3' 5'-GATGTCAAACTCACTCATGGCT-3'
    IL-11 5'-CTGGGCTAGGGCATGAACTG-3' 5'-CTGGGACTCCAAGTGCAAGA-3'
    TNF-α 5'-CCCAGGCAGTCAGATCATCTTC-3' 5'-GCTGCCCCTCAGCTTGAG-3'
    CC趋化因子配体(CCL)2 5'-CAGCCAGATGCAATCAATGCC-3' 5'-TGGAATCCTGAACCCACTTCT-3'
    CCL3 5'-AGTTCTCTGCATCACTTGCTG-3' 5'-CGGCTTCGCTTGGTTAGGAA-3'
    CCL8 5'-TGGAGAGCTACACAAGAATCACC-3' 5'-TGGTCCAGATGCTTCATGGAA-3'
    CCL20 5'-TGCTGTACCAAGAGTTTGCTC-3' 5'-CGCACACAGACAACTTTTTCTTT-3'
    CCL24 5'-ACATCATCCCTACGGGCTCT-3' 5'-CTTGGGGTCGCCACAGAAC-3'
    CXC趋化因子受体(CXCR)1 5'-CTGACCCAGAAGCGTCACTTG-3' 5'-CCAGGACCTCATAGCAAACTG-3'
    CXCR5 5'-CACGTTGCACCTTCTCCCAA-3' 5'-GGAATCCCGCCACATGGTAG-3'
    下载: 导出CSV

    表  2  不同浓度黄芪汤对足细胞增殖抑制率的影响(x±s, %, n=3)

    Table  2.   Effect of different concentration of Huangqi Decoction on podocyte proliferation (x±s, %, n=3)

    黄芪汤/(μg·mL-1) 24 h 48 h 72 h
    1 7.56±2.69 7.56±2.12 8.33±1.51
    3 7.34±3.93 8.31±2.09 8.96±1.43
    10 8.74±5.23 10.89±4.56 10.93±1.99
    30 9.63±3.95 10.71±4.55 11.18±2.48
    100 8.36±3.42 11.23±4.37 10.03±2.96
    300 27.00±3.74** 45.62±6.31** 52.19±3.93**
    1 000 42.08±3.18** 62.70±2.28** 66.92±6.02**
    3 000 51.05±2.71** 78.48±1.05** 82.78±4.05**
    注: 与黄芪汤1 μg·mL-1组比较, **P < 0.01。
    下载: 导出CSV
  • [1] KALANTAR-ZADEH K, JAFAR TH, NITSCH D, et al. Chronic kidney disease[J]. Lancet, 2021, 398(10302): 786-802. doi: 10.1016/S0140-6736(21)00519-5
    [2] CECCARELLI D, PALEARI R, SOLERTE B, et al. Re-thinking diabetic nephropathy: Microalbuminuria is just a piece of the diagnostic puzzle[J]. Clin Chim Acta, 2022, 524: 146-153. doi: 10.1016/j.cca.2021.11.009
    [3] FOGO AB. Gains in understanding of podocyte loss[J]. Kidney Int, 2021, 100(5): 978-980. doi: 10.1016/j.kint.2021.08.003
    [4] BARRERA-CHIMAL J, JAISSER F. Pathophysiologic mechanisms in diabetic kidney disease: A focus on current and future therapeutic targets[J]. Diabetes Obes Metab, 2020, 22(S1): 16-31. doi: 10.1111/dom.13969
    [5] LI M, GUO QS, CAI HQ, et al. miR-218 regulates diabetic nephropathy via targeting IKK-β and modulating NK-κB-mediated inflammation[J]. J Cell Physiol, 2020, 235(4): 3362-3371. doi: 10.1002/jcp.29224
    [6] LIN LY, LIN HF, WANG D, et al. Bone marrow mesenchymal stem cells ameliorated kidney fibrosis by attenuating TLR4/NF-κB in diabetic rats[J]. Life Sci, 2020, 262: 118385. doi: 10.1016/j.lfs.2020.118385
    [7] 杨士瀛. 仁斋直指方论[M]. 福州: 福建科学技术出版社, 1989: 437.

    YANG SY. Ren-zhai's Direct Guidance on Formulas[M]. Fuzhou: Fujian science and technology press, 1989: 437.
    [8] ZHAO J, WANG L, CAO AL, et al. HuangQi Decoction ameliorates renal fibrosis via TGF-β/smad signaling pathway in vivo and in vitro[J]. Cell Physiol Biochem, 2016, 38(5): 1761-1774. doi: 10.1159/000443115
    [9] GUO HJ, CAO AL, CHU S, et al. Astragaloside Ⅳ attenuates podocyte apoptosis mediated by endoplasmic Reticulum stress through upregulating sarco/endoplasmic Reticulum Ca2+-ATPase 2 expression in diabetic nephropathy[J]. Front Pharmacol, 2016, 7: 500.
    [10] LI ZZ, DENG WJ, CAO AL, et al. Huangqi Decoction inhibits hyperglycemia-induced podocyte apoptosis by down-regulated Nox4/p53/bax signaling in vitro and in vivo[J]. Am J Transl Res, 2019, 11(5): 3195-3212.
    [11] 陈骏良, 王利, 臧赢君, 等. 黄芪汤对肾脏集合管细胞ENaC活性的影响作用研究[J]. 上海医药, 2019, 40(3): 34-37. doi: 10.3969/j.issn.1006-1533.2019.03.014

    CHEN JL, WANG L, ZANG YJ, et al. Study on the effect of Huangqi Decoction on ENaC activity in renal collecting duct cell[J]. Shanghai Med Pharm J, 2019, 40(3): 34-37. doi: 10.3969/j.issn.1006-1533.2019.03.014
    [12] CHU S, MAO XD, WANG L, et al. Effects of Huang qi decoction on endothelial dysfunction induced by homocysteine[J]. Evid Based Complement Alternat Med, 2016, 2016: 7272694.
    [13] CHEN F, ZHU XG, SUN ZQ, et al. Astilbin inhibits high glucose-induced inflammation and extracellular matrix accumulation by suppressing the TLR4/MyD88/NF-κB pathway in rat glomerular mesangial cells[J]. Front Pharmacol, 2018, 9: 1187. doi: 10.3389/fphar.2018.01187
    [14] YANG XH, DANG XW, ZHANG X, et al. Liquiritin reduces lipopolysaccharide-aroused HaCaT cell inflammation damage via regulation of microRNA-31/MyD88[J]. Int Immunopharmacol, 2021, 101(Pt B): 108283.
    [15] PASSOS F, ARAÚJO-FILHO HG, MONTEIRO BS, et al. Anti-inflammatory and modulatory effects of steroidal saponins and sapogenins on cytokines: A review of pre-clinical research[J]. Phytomedicine, 2022, 96: 153842. doi: 10.1016/j.phymed.2021.153842
    [16] WANG Y, CUI JQ, LIU M, et al. Schisandrin C attenuates renal damage in diabetic nephropathy by regulating macrophage polarization[J]. Am J Transl Res, 2021, 13(1): 210-222.
    [17] WANG EY, WANG L, DING R, et al. Astragaloside Ⅳ acts through multi-scale mechanisms to effectively reduce diabetic nephropathy[J]. Pharmacol Res, 2020, 157: 104831. doi: 10.1016/j.phrs.2020.104831
    [18] HARIKRISHNAN R, DEVI G, VAN DOAN H, et al. Study on antioxidant potential, immunological response, and inflammatory cytokines induction of glycyrrhizic acid (GA) in silver carp against vibriosis[J]. Fish Shellfish Immunol, 2021, 119: 193-208. doi: 10.1016/j.fsi.2021.09.040
    [19] CHEN Y, LIU QP, SHAN ZF, et al. The protective effect and mechanism of catalpol on high glucose-induced podocyte injury[J]. BMC Complement Altern Med, 2019, 19(1): 244. doi: 10.1186/s12906-019-2656-8
    [20] WANG QW, DAI XX, XIANG X, et al. A natural product of acteoside ameliorate kidney injury in diabetes db/db mice and HK-2 cells via regulating NADPH/oxidase-TGF-β/Smad signaling pathway[J]. Phytother Res, 2021, 35(9): 5227-5240. doi: 10.1002/ptr.7196
    [21] GNUDI L, COWARD RJM, LONG DA. Diabetic nephropathy: Perspective on novel molecular mechanisms[J]. Trends Endocrinol Metab, 2016, 27(11): 820-830. doi: 10.1016/j.tem.2016.07.002
    [22] 池杨峰, 刘爽, 王浩, 等. 黄芪汤对糖尿病肾病Ⅲ期患者蛋白尿及相关炎症因子的影响[J]. 中国中西医结合肾病杂志, 2020, 21(4): 305-308. doi: 10.3969/j.issn.1009-587X.2020.04.008

    CHI YF, LIU S, WANG H, et al. Effect of Huangqi Decoction on proteinuria and related inflammatory factors expression of patients with diabetic kidney disease Ⅲ[J]. Chin J Integr Tradit West Nephrol, 2020, 21(4): 305-308. doi: 10.3969/j.issn.1009-587X.2020.04.008
    [23] FU J, YI ZZ, CAI MC, et al. Global transcriptomic changes in glomerular endothelial cells in mice with podocyte depletion and glomerulosclerosis[J]. Cell Death Dis, 2021, 12(7): 687. doi: 10.1038/s41419-021-03951-x
    [24] LIANG G, SONG LT, CHEN ZL, et al. Fibroblast growth factor 1 ameliorates diabetic nephropathy by an anti-inflammatory mechanism[J]. Kidney Int, 2018, 93(1): 95-109. doi: 10.1016/j.kint.2017.05.013
    [25] WU L, LIU CJ, CHANG DY, et al. Annexin A1 alleviates kidney injury by promoting the resolution of inflammation in diabetic nephropathy[J]. Kidney Int, 2021, 100(1): 107-121. doi: 10.1016/j.kint.2021.02.025
    [26] CHANG TT, CHEN JW. The role of chemokines and chemokine receptors in diabetic nephropathy[J]. Int J Mol Sci, 2020, 21(9): 3172. doi: 10.3390/ijms21093172
    [27] WANG YD, WU X, GENG MY, et al. CCL24 protects renal function by controlling inflammation in podocytes[J]. Dis Markers, 2021, 2021: 8837825.
    [28] SHANG J, WANG LY, ZHANG Y, et al. Chemerin/ChemR23 axis promotes inflammation of glomerular endothelial cells in diabetic nephropathy[J]. J Cell Mol Med, 2019, 23(5): 3417-3428. doi: 10.1111/jcmm.14237
    [29] DING LH, LIU D, XU M, et al. TLR2-MyD88-NF-κB pathway is involved in tubulointerstitial inflammation caused by proteinuria[J]. Int J Biochem Cell Biol, 2015, 69: 114-120. doi: 10.1016/j.biocel.2015.10.014
    [30] CHENG JH, XU X, LI YB, et al. Arctigenin ameliorates depression-like behaviors in Toxoplasma gondii-infected intermediate hosts via the TLR4/NF-κB and TNFR1/NF-κB signaling pathways[J]. Int Immunopharmacol, 2020, 82: 106302. doi: 10.1016/j.intimp.2020.106302
    [31] QI MY, HE YH, CHENG Y, et al. Icariin ameliorates streptozocin-induced diabetic nephropathy through suppressing the TLR4/NF-κB signal pathway[J]. Food Funct, 2021, 12(3): 1241-1251. doi: 10.1039/D0FO02335C
    [32] LIU TL, ZHANG MJ, NIU HY, et al. Astragalus polysaccharide from Astragalus Melittin ameliorates inflammation via suppressing the activation of TLR-4/NF-κB p65 signal pathway and protects mice from CVB3-induced virus myocarditis[J]. Int J Biol Macromol, 2019, 126: 179-186. doi: 10.1016/j.ijbiomac.2018.12.207
    [33] TIAN H, LIU ZJ, PU YW, et al. Immunomodulatory effects exerted by Poria cocos polysaccharides via TLR4/TRAF6/NF-κB signaling in vitro and in vivo[J]. Biomed Pharmacother, 2019, 112: 108709. doi: 10.1016/j.biopha.2019.108709
    [34] CHOI YH. Catalpol attenuates lipopolysaccharide-induced inflammatory responses in BV2 microglia through inhibiting the TLR4-mediated NF-κB pathway[J]. Gen Physiol Biophys, 2019, 38(2): 111-122. doi: 10.4149/gpb-2018044
    [35] MAO DD, TIAN XY, MAO D, et al. A polysaccharide extract from the medicinal plant Maidong inhibits the IKK-NF-κB pathway and IL-1β-induced islet inflammation and increases insulin secretion[J]. J Biol Chem, 2020, 295(36): 12573-12587. doi: 10.1074/jbc.RA120.014357
    [36] YOU SB, QIAN JC, WU GJ, et al. Schizandrin B attenuates angiotensin Ⅱ induced endothelial to mesenchymal transition in vascular endothelium by suppressing NF-κB activation[J]. Phytomedicine, 2019, 62: 152955. doi: 10.1016/j.phymed.2019.152955
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  88
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-15
  • 网络出版日期:  2022-07-09
  • 发布日期:  2022-07-10

目录

    /

    返回文章
    返回