留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

当归补血汤通过miR-27a/TGF-β1/Smad3通路抑制HK-2细胞纤维化作用及机制研究

赵烨 葛凡 李子航 朱景天 薛梅

赵烨, 葛凡, 李子航, 朱景天, 薛梅. 当归补血汤通过miR-27a/TGF-β1/Smad3通路抑制HK-2细胞纤维化作用及机制研究[J]. 南京中医药大学学报, 2022, 38(7): 592-598. doi: 10.14148/j.issn.1672-0482.2022.0592
引用本文: 赵烨, 葛凡, 李子航, 朱景天, 薛梅. 当归补血汤通过miR-27a/TGF-β1/Smad3通路抑制HK-2细胞纤维化作用及机制研究[J]. 南京中医药大学学报, 2022, 38(7): 592-598. doi: 10.14148/j.issn.1672-0482.2022.0592
ZHAO Ye, GE Fan, LI Zi-hang, ZHU Jing-tian, XUE Mei. Study on the Effect and Mechanism of Danggui Buxue Decoction Inhibiting HK-2 Cell Fibrosis through miR-27a/TGF-β1/Smad3 Pathway[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(7): 592-598. doi: 10.14148/j.issn.1672-0482.2022.0592
Citation: ZHAO Ye, GE Fan, LI Zi-hang, ZHU Jing-tian, XUE Mei. Study on the Effect and Mechanism of Danggui Buxue Decoction Inhibiting HK-2 Cell Fibrosis through miR-27a/TGF-β1/Smad3 Pathway[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(7): 592-598. doi: 10.14148/j.issn.1672-0482.2022.0592

当归补血汤通过miR-27a/TGF-β1/Smad3通路抑制HK-2细胞纤维化作用及机制研究

doi: 10.14148/j.issn.1672-0482.2022.0592
基金项目: 

国家自然科学基金青年科学基金项目 81904085

江苏省自然科学基金面上项目 BK20191412

详细信息
    作者简介:

    赵烨, 女, 硕士研究生, E-mail: 547583769@qq.com

    通讯作者:

    薛梅, 女, 副教授, 主要从事中药方剂治疗糖尿病及其并发症相关研究, E-mail: 290427@njucm.edu.cn

  • 中图分类号: R285.5

Study on the Effect and Mechanism of Danggui Buxue Decoction Inhibiting HK-2 Cell Fibrosis through miR-27a/TGF-β1/Smad3 Pathway

  • 摘要:   目的  探讨当归补血汤通过miR-27a调控HK-2细胞纤维化的机制。  方法  HK-2细胞分为对照组、高糖组、高糖+空白血清组、高糖+当归补血汤含药血清组。采用MTT法检测各组细胞增殖情况; 采用Western blot法检测纤维化相关因子波形蛋白(Vimentin)、Ⅳ型胶原(COL Ⅳ)、α-平滑肌肌动蛋白(α-SMA)、p-Smad3/Smad3和转化生长因子(TGF)-β1蛋白的表达情况; qPCR法检测miR-27a及纤维化相关因子mRNA的表达情况; 通过转染miR-27a抑制剂及Smad3-siRNA并向培养基中加入TGF-β1, 观察miR-27a的表达和纤维化相关蛋白表达的情况。  结果  MTT结果显示, 与对照组相比, 高糖组细胞增殖率明显降低(P < 0.05, P < 0.001), 当归补血汤含药血清作用24、48 h后细胞增殖率明显提高(P < 0.05, P < 0.001)。Western blot结果显示, 当归补血汤含药血清明显抑制高糖诱导的HK-2细胞纤维化相关蛋白COL Ⅳ、α-SMA、Vimentin、TGF-β1、p-Smad3/Smad3的表达(P < 0.05, P < 0.01)。qPCR结果显示, 当归补血汤含药血清明显抑制高糖诱导的HK-2细胞COL Ⅳ、α-SMA、Vimentin、TGF-β1 mRNA和miR-27a的表达(P < 0.05, P < 0.01)。TGF-β1处理细胞后, 细胞纤维化加重, miR-27a的表达升高(P < 0.05, P < 0.01), 当归补血汤含药血清可明显降低TGF-β1诱导的纤维化细胞中miR-27a的表达升高(P < 0.001)。转染miR-27a抑制剂及Smad3-siRNA可明显降低TGF-β1诱导的细胞纤维化蛋白COL Ⅳ、α-SMA、Vimentin、TGF-β1、p-Smad3/Smad3表达的升高(P < 0.05, P < 0.01)。  结论  当归补血汤含药血清可促进HK-2细胞增殖, 并通过miR-27a/TGF-β1/Smad3信号通路调控HK-2细胞纤维化。

     

  • 图  1  当归补血汤含药血清处理HK-2细胞48 h纤维化相关蛋白表达的条带

    注: A.对照组;B.高糖组;C.高糖+空白血清组;D.高糖+含药血清组

    Figure  1.  Electrophoresis bands of fibrosis-related proteins in HK-2 cells treated with DBD containing serum for 48 h

    图  2  转染Smad3-siRNA及miR-27a抑制剂对TGF-β1处理后HK-2细胞纤维化相关蛋白表达的影响

    注: anti-miR-27a.miR-27a抑制剂组; miR-Ctrl.miR-27a抑制剂阴性对照组; Smad3-siRNA.Smad3-siRNA组; Con-siRNA.Smad3-siRNA阴性对照组。组间比较, *P < 0.05, **P < 0.01, ***P < 0.001。

    Figure  2.  Transfection of Smad3-siRNA and miR-27a inhibitor on the expression of fibrosis-related proteins in HK-2 cells after TGF-β1 treatment

    表  1  qPCR引物序列

    Table  1.   Primer sequences for qPCR

    基因 正向引物 反向引物
    TGF-β1 5'-GCGTCTAATGGTGGAAACC-3' 5'-GAGCAACACGGGTTCAGGTA-3'
    Vimentin 5'-CAGCATGGACGTTCGTCTG-3' 5'-AACCACGGTITGGTCCTTGG-3'
    α-SMA 5'-GTGTGTGTGTCTTGGTAATGG-3' 5'-CCTTGTGTCCTGATCGTTG-3'
    COL Ⅳ 5'-GAAGACATCCCACCAATCAC-3' 5'-CACGTCATCGCACAACAC-3'
    β-actin 5'-GGGACCTGACTGACTACCTC-3' 5'-TCATACTCCTGCTTGCTGAT-3'
    miR-27a 5'-GCGCGTTCACAGTGGCTAAG-3' 5'-AGTGCAGGGTCCGAGGTATT-3'
    U6 5'-CTCGCTTCGGCAGCACA-3' 5'-AACGCTTCACGAATTTGCGT-3'
    下载: 导出CSV

    表  2  当归补血汤含药血清对HK-2细胞增殖率的影响(x±s, %, n=6)

    Table  2.   Effect of Danggui Buxue Decoction (DBD) containing serum on HK-2 proliferative rate (x±s, %, n=6)

    组别 12 h 24 h 48 h
    对照组 100.00±21.72 100.00±18.10 100.00±13.19
    高糖组 68.99±19.31* 48.16±18.84*** 52.84±16.66***
    高糖+空白血清组 72.75±14.66* 62.72±16.42** 58.57±8.56***
    高糖+含药血清组 85.40±19.99 81.09±15.55# 91.89±15.48###
    注: 与对照组比较,*P < 0.05, **P < 0.01, ***P < 0.001;与高糖+空白血清组比较,#P < 0.05, ###P < 0.001。
    下载: 导出CSV

    表  3  当归补血汤对HK-2细胞纤维化相关蛋白表达的影响(x±s, n=3)

    Table  3.   Effect of DBD containing serum on the expression of fibrosis-related proteins in HK-2 cells (x±s, n=3)

    组别 COL Ⅳ/β-actin Vimentin/β-actin α-SMA/β-actin TGF-β1/β-actin p-Smad3/Smad3
    对照组 1.00±0.06 1.00±0.17 1.00±0.14 1.00±0.09 1.00±0.09
    高糖组 2.17±0.17*** 1.99±0.13** 1.90±0.13** 2.55±0.08*** 1.59±0.21*
    高糖+空白血清组 1.98±0.14** 2.30±0.25** 2.02±0.11*** 2.48±0.09*** 1.58±0.21*
    高糖+含药血清组 1.07±0.19## 1.50±0.18# 1.56±0.10## 1.09±0.28## 1.21±0.08#
    注: 与对照组比较, *P < 0.05, **P < 0.01, ***P < 0.001;与高糖+空白血清组比较, #P < 0.05, ##P < 0.01。
    下载: 导出CSV

    表  4  当归补血汤对HK-2细胞纤维化相关mRNA表达的影响(x±s, n=3)

    Table  4.   Effect of DBD containing serum on the expression of fibrosis-related mRNA in HK-2 cells (x±s, n=3)

    组别 COL Ⅳ/β-actin Vimentin/β-actin α-SMA/β-actin TGF-β1/β-actin miR-27a/U6
    对照组 1.00±0.13 1.00±0.10 1.00±0.14 1.00±0.06 1.00±0.10
    高糖组 1.94±0.40* 1.30±0.06* 1.48±0.12* 1.58±0.07*** 1.47±0.13**
    高糖+空白血清组 1.83±0.15** 1.41±0.07** 1.63±0.21* 1.80±0.40* 2.10±0.19***
    高糖+含药血清组 1.44±0.20## 1.21±0.07## 1.15±0.14# 1.09±0.22# 1.16±0.22##
    注: 与对照组比较,*P < 0.05, **P < 0.01, ***P < 0.001;与高糖+空白血清组比较,#P < 0.05, ##P < 0.01。
    下载: 导出CSV

    表  5  TGF-β1处理HK-2细胞对miR-27a表达的影响(x±s, n=3)

    Table  5.   The effect of TGF-β1 treatment on the expression of miR-27a in HK-2 cells (x±s, n=3)

    组别 miR-27a/U6
    对照组 1.00±0.04
    5 ng·mL-1 TGF-β1组 2.23±0.69*
    10 ng·mL-1 TGF-β1组 4.09±0.63**
    注: 与对照组比较, *P < 0.05, **P < 0.01。
    下载: 导出CSV

    表  6  TGF-β1及当归补血汤含药血清处理HK-2细胞对miR-27a表达的影响(x±s, n=3)

    Table  6.   The effect of TGF-β1 and DBD containing serum on the expression of miR-27a in HK-2 cells (x±s, n=3)

    组别 miR-27a/U6
    对照组 1.00±0.01
    当归补血汤组 0.33±0.08***
    注: 与对照组比较, ***P < 0.001。
    下载: 导出CSV
  • [1] AVOGARO A, FADINI GP. Microvascular complications in diabetes: A growing concern for cardiologists[J]. Int J Cardiol, 2019, 291: 29-35. doi: 10.1016/j.ijcard.2019.02.030
    [2] YANG SF, ABDULLA R, LU C, et al. Inhibition of microRNA-376b protects against renal interstitial fibrosis via inducing macrophage autophagy by upregulating Atg5 in mice with chronic kidney disease[J]. Kidney Blood Press Res, 2018, 43(6): 1749-1764. doi: 10.1159/000495394
    [3] TANG FJ, HAO YR, ZHANG X, et al. Effect of echinacoside on kidney fibrosis by inhibition of TGF-β1/Smads signaling pathway in the db/db mice model of diabetic nephropathy[J]. Drug Des Devel Ther, 2017, 11: 2813-2826. doi: 10.2147/DDDT.S143805
    [4] WU LN, WANG QZ, GUO F, et al. Involvement of miR-27a-3p in diabetic nephropathy via affecting renal fibrosis, mitochondrial dysfunction, and endoplasmic Reticulum stress[J]. J Cell Physiol, 2021, 236(2): 1454-1468. doi: 10.1002/jcp.29951
    [5] HOU XY, TIAN JW, GENG J, et al. microRNA-27a promotes renal tubulointerstitial fibrosis via suppressing PPARγ pathway in diabetic nephropathy[J]. Oncotarget, 2016, 7(30): 47760-47776. doi: 10.18632/oncotarget.10283
    [6] SHI XQ, YUE SJ, TANG YP, et al. A network pharmacology approach to investigate the blood enriching mechanism of Danggui buxue Decoction[J]. J Ethnopharmacol, 2019, 235:227-242.
    [7] ZHANG R, HAN X, HUANG T, et al. Danggui Buxue Tang inhibited mesangial cell proliferation and extracellular matrix accumulation through GAS5/NF-κB pathway[J]. Biosci Rep, 2019, 39(10): BSR20181740. doi: 10.1042/BSR20181740
    [8] WANG WK, ZHOU Y, FAN L, et al. The antidepressant-like effects of Danggui Buxue Decoction in GK rats by activating CREB/BDNF/TrkB signaling pathway[J]. Phytomedicine, 2021, 89: 153600. doi: 10.1016/j.phymed.2021.153600
    [9] GAO DH, GUO YJ, LI XJ, et al. An aqueous extract of Radix astragali, Angelica sinensis, and Panax notoginseng is effective in preventing diabetic retinopathy[J]. Evid Based Complement Alternat Med, 2013, 2013: 578165.
    [10] 薛梅, 卞勇, 周俊杰, 等. 当归补血汤主要吸收成分对GK大鼠肾保护作用研究[J]. 南京中医药大学学报, 2018, 34(2): 190-193. http://xb.njucm.edu.cn/article/id/ZR2018_0219

    XUE M, BIAN Y, ZHOU JJ, et al. Renal protective effect of absorbed bioactive compounds of Danggui buxue decoction on GK rats[J]. J Nanjing Univ Tradit Chin Med, 2018, 34(2): 190-193. http://xb.njucm.edu.cn/article/id/ZR2018_0219
    [11] CALLE P, HOTTER G. Macrophage phenotype and fibrosis in diabetic nephropathy[J]. Int J Mol Sci, 2020, 21(8): 2806. doi: 10.3390/ijms21082806
    [12] ZENG LF, XIAO Y, SUN L. A glimpse of the mechanisms related to renal fibrosis in diabetic nephropathy[J]. Adv Exp Med Biol, 2019, 1165: 49-79.
    [13] BROSIUS FC 3rd, ALPERS CE, BOTTINGER EP, et al. Mouse models of diabetic nephropathy[J]. J Am Soc Nephrol, 2009, 20(12), 2503-2512. doi: 10.1681/ASN.2009070721
    [14] WANG JP, FANG CY, WANG SX, et al. Danggui Buxue Tang ameliorates bleomycin-induced pulmonary fibrosis in rats through inhibiting transforming growth factor-β1/Smad3/plasminogen activator inhibitor-1 signaling pathway[J]. J Tradit Chin Med, 2020, 40(2): 236-244.
    [15] CHEN Y, CHEN Q, LU J, et al. Effects of Danggui Buxue Decoction on lipid peroxidation and MMP-2/9 activities of fibrotic liver in rats[J]. Chin J Integr Med, 2009, 15(6): 435-441. doi: 10.1007/s11655-009-0435-y
    [16] WANG LN, MA JW, GUO CX, et al. Danggui Buxue Tang attenuates tubulointerstitial fibrosis via suppressing NLRP3 inflammasome in a rat model of unilateral ureteral obstruction[J]. Biomed Res Int, 2016, 2016: 9368483.
    [17] WANG JY, GAO YB, MA MF, et al. Effect of miR-21 on renal fibrosis by regulating MMP-9 and TIMP1 in kk-ay diabetic nephropathy mice[J]. Cell Biochem Biophys, 2013, 67(2): 537-546. doi: 10.1007/s12013-013-9539-2
    [18] LIU HF, WANG XH, LIU SF, et al. Effects and mechanism of miR-23b on glucose-mediated epithelial-to-mesenchymal transition in diabetic nephropathy[J]. Int J Biochem Cell Biol, 2016, 70: 149-160. doi: 10.1016/j.biocel.2015.11.016
    [19] WU LN, WANG QZ, GUO F, et al. microRNA-27a induces mesangial cell injury by targeting of PPARγ and its in vivo knockdown prevents progression of diabetic nephropathy[J]. Sci Rep, 2016, 6: 26072. doi: 10.1038/srep26072
    [20] LAN HY. Diverse roles of TGF-β/Smads in renal fibrosis and inflammation[J]. Int J Biol Sci, 2011, 7(7): 1056-1067. doi: 10.7150/ijbs.7.1056
    [21] 侯晓艳. microRNA-27a在糖尿病肾病肾小管间质纤维化中的作用及机制研究[D]. 广州: 南方医科大学, 2017.

    HOU XY. A study of the mechanism and effect of microRNA-27a on renal tubulointerstitial fibrosis in diabetic nephropathy[D]. Guangzhou: Southern Medical University, 2017.
    [22] KRUPA A, JENKINS R, LUO DD, et al. Loss of microRNA-192 promotes fibrogenesis in diabetic nephropathy[J]. J Am Soc Nephrol, 2010, 21(3): 438-447. doi: 10.1681/ASN.2009050530
    [23] ZHENG ZJ, GUAN MP, JIA YJ, et al. The coordinated roles of miR-26a and miR-30c in regulating TGFβ1-induced epithelial-to-mesenchymal transition in diabetic nephropathy[J]. Sci Rep, 2016, 6: 37492. doi: 10.1038/srep37492
    [24] SATO M, MURAGAKI Y, SAIKA S, et al. Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction[J]. J Clin Invest, 2003, 112(10): 1486-1494. doi: 10.1172/JCI200319270
    [25] KELLENBERGER T, KRAG S, DANIELSEN CC, et al. Differential effects of Smad3 targeting in a murine model of chronic kidney disease[J]. Physiol Rep, 2013, 1(7): e00181. doi: 10.1002/phy2.181
    [26] ZHONG X, CHUNG ACK, CHEN HY, et al. Smad3-mediated upregulation of miR-21 promotes renal fibrosis[J]. J Am Soc Nephrol, 2011, 22(9): 1668-1681. doi: 10.1681/ASN.2010111168
  • 加载中
图(2) / 表(6)
计量
  • 文章访问数:  330
  • HTML全文浏览量:  71
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-19
  • 网络出版日期:  2022-07-09
  • 发布日期:  2022-07-10

目录

    /

    返回文章
    返回