留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于纳滤溶解扩散理论探索热毒宁注射液醇沉浓度对绿原酸分子态比例及传质行为的调控规律

章莲 王智 李存玉 支兴蕾 彭国平

章莲, 王智, 李存玉, 支兴蕾, 彭国平. 基于纳滤溶解扩散理论探索热毒宁注射液醇沉浓度对绿原酸分子态比例及传质行为的调控规律[J]. 南京中医药大学学报, 2022, 38(5): 432-438. doi: 10.14148/j.issn.1672-0482.2022.0432
引用本文: 章莲, 王智, 李存玉, 支兴蕾, 彭国平. 基于纳滤溶解扩散理论探索热毒宁注射液醇沉浓度对绿原酸分子态比例及传质行为的调控规律[J]. 南京中医药大学学报, 2022, 38(5): 432-438. doi: 10.14148/j.issn.1672-0482.2022.0432
ZHANG Lian, WANG Zhi, LI Cun-yu, ZHI Xing-lei, PENG Guo-ping. Exploring the Regulation Rules of Ethanol Precipitation Concentration on Chlorogenic Acid Molecular State and Nanofiltration mass Transfer Behavior in Reduning Injection Based on the Solution-Diffusion Theory[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(5): 432-438. doi: 10.14148/j.issn.1672-0482.2022.0432
Citation: ZHANG Lian, WANG Zhi, LI Cun-yu, ZHI Xing-lei, PENG Guo-ping. Exploring the Regulation Rules of Ethanol Precipitation Concentration on Chlorogenic Acid Molecular State and Nanofiltration mass Transfer Behavior in Reduning Injection Based on the Solution-Diffusion Theory[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(5): 432-438. doi: 10.14148/j.issn.1672-0482.2022.0432

基于纳滤溶解扩散理论探索热毒宁注射液醇沉浓度对绿原酸分子态比例及传质行为的调控规律

doi: 10.14148/j.issn.1672-0482.2022.0432
基金项目: 

江苏省自然科学基金面上项目 BK20211303

国家自然科学基金面上项目 82074006

中药制药过程新技术国家重点实验室开放基金项目 SKL2020Z0101

国家级大学生创新创业训练计划项目 202110315042

2021年度康缘中药学院创新创业项目 kyxysc06

详细信息
    作者简介:

    章莲, 女, 硕士研究生, E-mail: lian1439@qq.com

    通讯作者:

    李存玉, 男, 副教授, 主要从事纳滤分离机制及产业应用研究, E-mail: 300632@njucm.edu.cn

  • 中图分类号: R284.1

Exploring the Regulation Rules of Ethanol Precipitation Concentration on Chlorogenic Acid Molecular State and Nanofiltration mass Transfer Behavior in Reduning Injection Based on the Solution-Diffusion Theory

  • 摘要:   目的  研究热毒宁注射液醇沉浓度对绿原酸分子态比例及纳滤传质行为的调控规律。  方法  基于溶解-扩散效应, 考察热毒宁注射液醇沉浓度对绿原酸分子态比例的影响, 进而拟合传质系数与绿原酸浓度的相关性曲线, 分析乙醇浓度对传质行为的调控规律。  结果  纳滤传质数学模型可用于热毒宁注射液醇沉中间体溶液中的绿原酸存在状态定量分析, 醇沉浓度在60%~80%之间时, 以分子态形式存在的绿原酸比例在22.21%~82.43%范围内, 随着醇沉浓度升高, 绿原酸的主要存在状态由离子态、缔合态向分子态过渡, 迁移程度表现为80%醇沉>70%醇沉>60%醇沉。  结论  在高浓度乙醇溶液环境下, 绿原酸单体、60%及70%醇沉中间体的纳滤分离行为可通过“溶解扩散-孔道位阻”效应协同调控分离, 为有机溶液环境下的成分有序分离提供了研究思路。

     

  • 图  1  绿原酸ln[(1-RoJv/Ro]对Jv的相关性

    Figure  1.  The correlation of ln[(1-RoJv/Ro] and JV of chlorogenic acid

    图  2  绿原酸纳滤传质系数与浓度的相关性曲线

    Figure  2.  Correlation curve between k and C0 of chlorogenic acid

    图  3  绿原酸ln[(1-RoJv/Ro]对Jv的相关性

    Figure  3.  The correlation of ln[(1-RoJv/Ro] and JV of chlorogenic acid

    图  4  绿原酸纳滤传质系数与浓度的相关性曲线

    Figure  4.  Correlation curve between k and C0 of chlorogenic acid

    图  5  绿原酸ln[(1-RoJv/Ro]对JV的相关性

    Figure  5.  The correlation of ln[(1-RoJv/Ro] and JV of chlorogenic acid

    图  6  绿原酸纳滤传质系数与浓度的相关性曲线

    Figure  6.  Correlation curve between k and C0 of chlorogenic acid

    图  7  乙醇浓度对绿原酸传质行为的影响

    Figure  7.  Effect of ethanol concentration on k of chlorogenic acid

    图  8  乙醇浓度对醇沉中间体传质行为的影响

    Figure  8.  Effect of ethanol concentration on k of ethanol precipitation intermediates

    表  1  60%醇沉溶液中绿原酸分子态比例

    Table  1.   Molecular form proportion of chlorogenic acid in precipitate solution with 60% ethanol

    绿原酸溶液 60%醇沉溶液 分子态比例/%
    浓度/ (mg·L-1) 传质系数/ (10-6 m·s-1) 浓度/ (mg·L-1) 传质系数/ (10-6 m·s-1)
    24.67 1.56 56.01 1.48 22.21
    150.13 1.93 70.01 1.52 25.78
    246.32 2.06 112.02 1.59 25.17
    399.63 2.08 280.05 1.84 36.94
    下载: 导出CSV

    表  2  70%醇沉溶液中绿原酸分子态比例

    Table  2.   Molecular form proportion of chlorogenic acid in precipitate solution with 70% ethanol

    绿原酸溶液 70%醇沉溶液 分子态比例/%
    浓度/ (mg·L-1) 传质系数/ (10-6 m·s-1) 浓度/ (mg·L-1) 传质系数/ (10-6 m·s-1)
    25.36 1.03 74.70 1.18 70.12
    150.00 1.43 93.37 1.23 69.58
    274.67 1.62 149.40 1.33 65.24
    399.53 1.76 373.50 1.46 42.34
    下载: 导出CSV

    表  3  80%醇沉溶液中绿原酸分子态比例

    Table  3.   Molecular form proportion of chlorogenic acid in precipitate solution with 80% ethanol

    绿原酸溶液 80%醇沉溶液 分子态比例/%
    浓度/ (mg·L-1) 传质系数/ (10-6 m·s-1) 浓度/ (mg·L-1) 传质系数/ (10-6 m·s-1)
    25.365 0.96 83.61 1.17 82.43
    149.72 1.26 104.51 1.19 71.81
    274.26 1.35 167.22 1.21 48.80
    399.77 1.50 418.06 1.25 22.99
    525.35 1.54 - - -
    下载: 导出CSV

    表  4  乙醇浓度对绿原酸传质系数的贡献百分比

    Table  4.   Percentage contribution of ethanol concentration to k of chlorogenic acid

    绿原酸浓度/(mg·L-1) 60%→70%乙醇浓度/% 70%→80%乙醇浓度/%
    25 88.88 11.12
    150 71.64 28.36
    275 64.95 35.05
    400 57.85 42.15
    下载: 导出CSV

    表  5  乙醇浓度对醇沉中间体传质系数的贡献比例

    Table  5.   Percentage contribution of ethanol concentration to k of ethanol precipitation intermediates

    绿原酸浓度/(mg·L-1) 60%→70%乙醇浓度/% 70%→80%乙醇浓度/%
    25 143.51 -43.51
    150 78.16 21.84
    275 70.39 29.61
    400 64.85 35.15
    下载: 导出CSV
  • [1] 彭国平. 中药制药化学[M]. 北京: 中国中医药出版社, 2016: 233-235.

    PENG GP. Pharmaceutical Chemistry of Traditional Chinese Medicine[M]. Beijing: China press of Chinese medicine, 2016: 233-235.
    [2] 徐芳芳, 杜慧, 张欣, 等. 在线中红外光谱监测热毒宁注射液金银花与青蒿醇沉过程7种指标成分研究[J]. 中草药, 2021, 52(10): 2909-2917. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202110007.htm

    XU FF, DU H, ZHANG X, et al. Online mid-infrared spectroscopy for monitoring seven index components in alcohol precipitation process of Lonicerae Japonicae Flos and Artemisiae Annuae Herba of Reduning Injection[J]. Chin Tradit Herb Drugs, 2021, 52(10): 2909-2917. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202110007.htm
    [3] 杨明, 杨园珍, 王雅琪, 等. 中药制剂生产过程中的质量风险分析与对策[J]. 中国中药杂志, 2017, 42(6): 1025-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201706003.htm

    YANG M, YANG YZ, WANG YQ, et al. Analysis and countermeasure for quality risk in process of traditional Chinese medicine preparations[J]. China J Chin Mater Med, 2017, 42(6): 1025-1030. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201706003.htm
    [4] MAI NNS, OTSUKA Y, GOTO S, et al. Effects of polymer molecular weight on curcumin amorphous solid dispersion; at-line monitoring system based on attenuated total reflectance mid-infrared and near-infrared spectroscopy[J]. J Drug Deliv Sci Technol, 2021, 61: 102278. doi: 10.1016/j.jddst.2020.102278
    [5] KWON B, MANDAL T, ELKINS MR, et al. Cholesterol interaction with the trimeric HIV fusion protein gp41 in lipid bilayers investigated by solid-state NMR spectroscopy and molecular dynamics simulations[J]. J Mol Biol, 2020, 432(16): 4705-4721. doi: 10.1016/j.jmb.2020.06.017
    [6] 李厚丽, 刘杭, 熊礼龙, 等. 丹参酮ⅡA/速释辅料二元固态溶液的玻璃化转变温度研究[J]. 中国现代应用药学, 2020, 37(12): 1417-1421. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYD202012002.htm

    LI HL, LIU H, XIONG LL, et al. Study on the glass transition temperature of binary solid solution composed with tanshinone ⅡA and immediate-release excipients[J]. Chin J Mod Appl Pharm, 2020, 37(12): 1417-1421. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYD202012002.htm
    [7] 李存玉, 吴鑫, 顾佳美, 等. 丹参中酚酸类成分相对分子质量大小与纳滤传质系数的相关性[J]. 中国中药杂志, 2018, 43(7): 1453-1458. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201807022.htm

    LI CY, WU X, GU JM, et al. Correlation of molecular weight and nanofiltration mass transfer coefficient of phenolic acid composition from Salvia miltiorrhiza[J]. China J Chin Mater Med, 2018, 43(7): 1453-1458. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201807022.htm
    [8] 王磊, 杨越, 李页瑞, 等. 热毒宁注射液金银花提取浓缩工段过程性能指数研究[J]. 中草药, 2017, 48(14): 2864-2869. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO201714010.htm

    WANG L, YANG Y, LI YR, et al. Study on manufacturing process performance index of extraction and concentration process of Lonicerae Japonicae Flos of Reduning Injection[J]. Chin Tradit Herb Drugs, 2017, 48(14): 2864-2869. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO201714010.htm
    [9] 李存玉, 刘莉成, 金立阳, 等. 基于道南效应和溶解-扩散效应分析低浓度乙醇中绿原酸的纳滤分离规律[J]. 中国中药杂志, 2017, 42(14): 2670-2675. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201714009.htm

    LI CY, LIU LC, JIN LY, et al. Analyze nanofiltration separation rule of chlorogenic acid from low concentration ethanol by Donnan effect and solution-diffusion effect[J]. China J Chin Mater Med, 2017, 42(14): 2670-2675. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201714009.htm
    [10] 李存玉, 伍清萍, 郑雨君, 等. 有机溶液环境下地黄中梓醇的纳滤分离机制研究[J]. 南京中医药大学学报, 2020, 36(2): 241-245. https://www.cnki.com.cn/Article/CJFDTOTAL-NJZY202002022.htm

    LI CY, WU QP, ZHENG YJ, et al. Study on the nanofiltration separation mechanism of catalpol of Rehmannia glutinosa in ethanol-water solution[J]. J Nanjing Univ Tradit Chin Med, 2020, 36(2): 241-245. https://www.cnki.com.cn/Article/CJFDTOTAL-NJZY202002022.htm
    [11] 国家药典委员会. 中华人民共和国药典: 一部[S]. 北京: 中国医药科技出版社, 2020: 231.

    Chinese Pharmacopoeia Commission. Pharmacopoeia of People's Republic of China: Ⅰ[M]. Beijing: China medical and technology press, 2020: 231.
    [12] NGUYEN TVN, PAUGAM L, RABILLER P, et al. Study of transfer of alcohol (methanol, ethanol, isopropanol) during nanofiltration in water/alcohol mixtures[J]. J Membr Sci, 2020, 601: 117907. doi: 10.1016/j.memsci.2020.117907
    [13] WU MY, RUAN XH, RICHMAN TINOTENDA K, et al. Cefalexin crystallization residual liquor separation via nanofiltration based multistage process[J]. Sep Purif Technol, 2020, 251: 117356. doi: 10.1016/j.seppur.2020.117356
    [14] 李存玉, 邹雨岑, 马莉, 等. 超声辅助膜组合技术探索绞股蓝总皂苷部位的分离机制与精制模式[J]. 中草药, 2021, 52(1): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202101013.htm

    LI CY, ZOU YC, MA L, et al. Exploring separation mechanism and refined mode of Gynostemma pentaphyllum total saponin by ultrasonic assisted membrane combination technique[J]. Chin Tradit Herb Drugs, 2021, 52(1): 91-98. https://www.cnki.com.cn/Article/CJFDTOTAL-ZCYO202101013.htm
    [15] REN D, LI YH, REN SP, et al. Microporous polyarylate membrane with nitrogen-containing heterocycles to enhance separation performance for organic solvent nanofiltration[J]. J Membr Sci, 2020, 610: 118295. doi: 10.1016/j.memsci.2020.118295
    [16] 伍蕊嗣, 刘涛, 覃盼盼, 等. 热毒宁注射液物理指纹谱研究及应用[J]. 中国中药杂志, 2017, 42(3): 505-509. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201703016.htm

    WU RS, LIU T, QIN PP, et al. Physical fingerprint for quality control of Reduning injection[J]. China J Chin Mater Med, 2017, 42(3): 505-509. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201703016.htm
    [17] 萧伟. 中药注射剂现代化生产原理与应用[M]. 北京: 人民卫生出版社, 2018: 36-40.

    XIAO W. Modernized Production of Principles and Applications of Traditional Chinese Medicine Injection[M]. Beijing: People's medical publishing house, 2018: 36-40.
    [18] LIVELY RP, SHOLL DS. From water to organics in membrane separations[J]. Nature Mater, 2017, 16(3): 276-279. doi: 10.1038/nmat4860
  • 加载中
图(8) / 表(5)
计量
  • 文章访问数:  220
  • HTML全文浏览量:  41
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-19
  • 发布日期:  2022-05-10

目录

    /

    返回文章
    返回