留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛冬青三萜皂苷对动脉粥样硬化大鼠粪便和尿液代谢组学的影响

白荣钰 易欢 邱静文 陈丰连 王莹 陈冰莹 李瑜 张蕾

白荣钰, 易欢, 邱静文, 陈丰连, 王莹, 陈冰莹, 李瑜, 张蕾. 毛冬青三萜皂苷对动脉粥样硬化大鼠粪便和尿液代谢组学的影响[J]. 南京中医药大学学报, 2022, 38(5): 424-431. doi: 10.14148/j.issn.1672-0482.2022.0424
引用本文: 白荣钰, 易欢, 邱静文, 陈丰连, 王莹, 陈冰莹, 李瑜, 张蕾. 毛冬青三萜皂苷对动脉粥样硬化大鼠粪便和尿液代谢组学的影响[J]. 南京中医药大学学报, 2022, 38(5): 424-431. doi: 10.14148/j.issn.1672-0482.2022.0424
BAI Rong-yu, YI Huan, QIU Jing-wen, CHEN Feng-lian, WANG Ying, CHEN Bing-ying, LI Yu, ZHANG Lei. Effects of Ilex Pubescens Triterpenoid Saponins on Fecal and Urine Metabolomics in Atherosclerotic Rats[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(5): 424-431. doi: 10.14148/j.issn.1672-0482.2022.0424
Citation: BAI Rong-yu, YI Huan, QIU Jing-wen, CHEN Feng-lian, WANG Ying, CHEN Bing-ying, LI Yu, ZHANG Lei. Effects of Ilex Pubescens Triterpenoid Saponins on Fecal and Urine Metabolomics in Atherosclerotic Rats[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(5): 424-431. doi: 10.14148/j.issn.1672-0482.2022.0424

毛冬青三萜皂苷对动脉粥样硬化大鼠粪便和尿液代谢组学的影响

doi: 10.14148/j.issn.1672-0482.2022.0424
基金项目: 

广东省教育厅创新强校工程项目 2016KTSCX019

广东省科技计划项目 2016A020226031

广州市科技局一般科学研究项目 201607010334

详细信息
    作者简介:

    白荣钰, 女, 硕士研究生, E-mail: bairongyu2021@163.com

    通讯作者:

    张蕾, 女, 教授,主要从事中药药效物质基础及其作用机制研究, E-mail: zhangleic431@163.com

  • 中图分类号: R285.5

Effects of Ilex Pubescens Triterpenoid Saponins on Fecal and Urine Metabolomics in Atherosclerotic Rats

  • 摘要:   目的  探讨毛冬青三萜皂苷(IPTS)对动脉粥样硬化(AS)模型大鼠粪便和尿液代谢组学的影响。  方法  采用高脂饮食联合腹腔注射维生素D3诱导大鼠AS模型, 实验分为对照组、模型组、IPTS组。检测大鼠血清中血脂四项水平, 应用核磁共振(NMR)技术对粪样和尿样进行代谢组学分析。  结果  IPTS干预后, 大鼠血清TG含量显著下降(P < 0.05), HDL-C含量显著升高(P < 0.05)。代谢组学分析结果表明, 模型组大鼠中上调的差异代谢产物主要包括氨基酸类(亮氨酸、酮亮氨酸、胍基乙酸酯)和肠道菌群相关代谢物(胆碱、甜菜碱、氧化三甲胺等), 下调的代谢产物包括三羧酸循环产物(琥珀酸盐、富马酸盐和戊二酸)、核苷酸类(腺嘌呤、黄嘌呤等)以及氨基酸类(色氨酸、犬尿氨酸等), 经IPTS干预后, 部分三羧酸循环产物、氨基酸和核苷酸代谢产物以及肠道菌群代谢物得到了回调。  结论  IPTS对部分粪便和尿液差异代谢物有调节改善作用, 对AS大鼠的代谢紊乱一定的预防和改善作用。

     

  • 图  1  各组大鼠血清中TC、TG、LDL-C、HDL-C含量

    注: 与对照组比较, ##P < 0.01;与模型组比较, *P < 0.05。x±s, n=10。

    Figure  1.  Serum contents of TC, TG, LDL-C and HDL-C in rats

    图  2  对照组与模型组粪样1H-NMR谱图的PCA得分图(A)、OPLS-DA得分图(B)、PLS-DA得分图(C)以及PLS排列实验验证图(D)

    Figure  2.  PCA scores plots (A), OPLS-DA scores plots (B), PLS-DA scores plots (C), and PLS permutation test plots (D) for the 1H-NMR data of fecal samples between control and model groups

    图  3  对照组与模型组尿样1H-NMR谱图的PCA得分图(A)、OPLS-DA得分图(B)、PLS-DA得分图(C)以及PLS排列实验验证图(D)

    Figure  3.  PCA scores plots (A), OPLS-DA scores plots (B), PLS-DA scores plots (C), and PLS permutation test plots (D) for the 1H-NMR data of urine samples between control and model groups

    图  4  IPTS组与模型组的粪样1H-NMR谱图的PCA得分图(A)、OPLS-DA得分图(B)、PLS-DA得分图(C) 以及PLS排列实验验证图(D)

    Figure  4.  PCA scores plots (A), OPLS-DA scores plots (B), PLS-DA scores plots (C), and PLS permutation test plots (D) for the 1H-NMR data of fecal samples between IPTS and model groups

    图  5  IPTS组与模型组的尿样1H-NMR谱图的PCA得分图(A)、OPLS-DA得分图(B)、PLS-DA得分图(C) 以及PLS排列实验验证图(D)

    Figure  5.  PCA scores plots (A), OPLS-DA scores plots (B), PLS-DA scores plots (C), and PLS permutation test plots (D) for the 1H-NMR data of urine samples between IPTS and model groups

    图  6  造模后的粪样(A)和尿样(B)代谢通路图

    Figure  6.  Metabolomics pathway analysis for fecal(A) and urine(B) samples after modeling

    图  7  IPTS干预后的粪样(A)和尿样(B)代谢通路图

    Figure  7.  Metabolomics pathway analysis for fecal(A) and urine(B) samples after the intervention of IPTS

    图  8  造模后差异代谢物参与的代谢通路图

    注:↑.上调; ↓.下调; 黑色字体.未检测到的代谢物; 绿色字体.检测到的差异代谢物

    Figure  8.  Involved metabolomics pathway analysis of differential metabolites after modeling

    图  9  IPTS干预后差异代谢物参与的代谢通路图

    注:↑.上调; ↓.下调; 黑色字体.未检测到的代谢物; 绿色字体.与造模后检测到的差异代谢物相同; 棕色字体.得到纠正的代谢物; 黄色字体.给药后引起新变化的代谢物

    Figure  9.  Involved metabolomics pathway analysis of differential metabolites after the intervention of IPTS

    表  1  IPTS浓度测定标准曲线

    Table  1.   Standard curve line of concentration determination of IPTS

    浓度/(mg·mL-1) 吸光度 浓度/(mg·mL-1) 吸光度
    0.000 68 0.193 0.003 40 1.203
    0.001 36 0.452 0.005 10 1.837
    0.002 72 0.960 0.006 80 2.459
    下载: 导出CSV

    表  2  大鼠粪样和尿样中差异代谢物汇总

    Table  2.   The summary of the differential metabolites between the feces and urine samples in rats

    代谢通路 差异代谢物 模型组vs.对照组 IPTS组vs.模型组
    粪便 尿液 粪便 尿液
    核苷酸代谢(Nucleotide metabolism) 腺嘌呤(Adenine) *
    次黄嘌呤(Hypoxanthine) *** **
    黄嘌呤(Xanthine) *** *
    黄嘌呤核苷(Xanthosine) ***
    鸟嘌呤(Guanine) *
    胞嘧啶(Cytosine) *
    肠道菌群宿主共代谢(Gut microbiota and host co-metabolism) 丁酸盐(Butyrate) ** *
    胆碱(Choline) **
    丙酸盐(Propionate) **
    三甲胺(TMA) *
    氧化三甲胺(TMAO) *** *
    戊酸盐(Valerate) ** *
    甲酸盐(Formate) * *
    乙酸盐(Acetate) ** **
    丙酮(Acetone) **
    甜菜碱(Betaine) ***
    肉碱(Carnitine) *** *
    肌酸(Creatine) **
    马尿酸盐(Hippurate) *** *
    乙酸苯酯(Phenylacetate) *** *
    氨基酸代谢(Amino acids metabolism) 丙氨酸(Alanine) **
    瓜氨酸(Citrulline) *
    亮氨酸(Leucine) ***
    胍基乙酸酯(Guanidoacetate) **
    4-氨基丁酸酯(4-Aminobutyrate) ** **
    吲哚-3-乙酸(Indole-3-acetate) ** *
    酮亮氨酸(Ketoleucine) ***
    犬尿氨酸(Kynurenine) *** *
    色氨酸(Tryptophan) ***
    缬氨酸(Valine) **
    β-丙氨酸(β-Alanine) ***
    二甲基甘氨酸(Dimethylglycine) **
    甘氨酸(Glycine) ***
    能量代谢(Energy metabolism) 富马酸盐(Fumarate) *** ***
    戊二酸(Glutarate) **
    琥珀酸盐(Succinate) ** **
    牛磺胆酸(Taurocholic acid) *
    2-氧戊二酸(2-Oxoglutarate) ** ***
    柠檬酸盐(Citrate) **
    乳酸(Lactate) *
    注: 2组间比较,*P < 0.05, * *P < 0.01, * * *P < 0.001。
    下载: 导出CSV
  • [1] MOORE KJ, KOPLEV S, FISHER EA, et al. Macrophage trafficking, inflammatory resolution, and genomics in atherosclerosis: JACC macrophage in CVD series (part 2)[J]. J Am Coll Cardiol, 2018, 72(18): 2181-2197. doi: 10.1016/j.jacc.2018.08.2147
    [2] 梅丽, 牛瑞娟, 蒋玲, 等. 毛冬青化学成分及药理活性研究进展[J]. 生物化工, 2018, 4(2): 129-131. doi: 10.3969/j.issn.2096-0387.2018.02.037

    MEI L, NIU RJ, JIANG L, et al. Advances in the study on the chemical constituents and pharmacological activities of Ilex pubescens hook. et arn[J]. Biol Chem Eng, 2018, 4(2): 129-131. doi: 10.3969/j.issn.2096-0387.2018.02.037
    [3] ZHOU Y, ZENG KW, ZHANG JY, et al. Triterpene saponins from the roots of Ilex pubescens[J]. Fitoterapia, 2014, 97: 98-104. doi: 10.1016/j.fitote.2014.05.020
    [4] 李美芬. 毛冬青中乌苏烷型三萜皂苷的药物代谢研究[D]. 广州: 广州中医药大学, 2011.

    LI MF. Study on drug metabolism of ursane-type saponins from Radix ilicis[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2011.
    [5] 钟海森, 覃骊兰, 杜正彩, 等. 壮药毛冬青的应用概况[J]. 河北中医, 2018, 40(5): 793-797. doi: 10.3969/j.issn.1002-2619.2018.05.036

    ZHONG HS, QIN LL, DU ZC, et al. Overview of the application of the Zhuang medicine Ilex pubescens[J]. Hebei J Tradit Chin Med, 2018, 40(5): 793-797. doi: 10.3969/j.issn.1002-2619.2018.05.036
    [6] 白荣钰, 易欢, 陈丰连, 等. 毛冬青三萜皂苷对动脉粥样硬化大鼠肠道菌群的影响[J]. 中草药, 2021, 52(20): 6245-6253. doi: 10.7501/j.issn.0253-2670.2021.20.014

    BAI RY, YI H, CHEN FL, et al. Effect of triterpenoid saponins from Ilex pubescens on intestinal flora in atherosclerotic rats[J]. Chin Tradit Herb Drugs, 2021, 52(20): 6245-6253. doi: 10.7501/j.issn.0253-2670.2021.20.014
    [7] 陈钰泉, 刘玉婷, 邱杰, 等. 不同比色法测定植物源总三萜皂苷含量的对比[J]. 黑龙江农业科学, 2018(3): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJN201803027.htm

    CHEN YQ, LIU YT, QIU J, et al. Comparation of different colorimetry for determination of the total herbal triterpenoid saponins[J]. Heilongjiang Agric Sci, 2018(3): 108-112. https://www.cnki.com.cn/Article/CJFDTOTAL-HLJN201803027.htm
    [8] XIAO CN, HAO FH, QIN XR, et al. An optimized buffer system for NMR-based urinary metabonomics with effective pH control, chemical shift consistency and dilution minimization[J]. Analyst, 2009, 134(5): 916-925. doi: 10.1039/b818802e
    [9] WOJTOWICZ W, ZABEK A, DEJA S, et al. Serum and urine 1H NMR-based metabolomics in the diagnosis of selected thyroid diseases[J]. Sci Rep, 2017, 7(1): 9108. doi: 10.1038/s41598-017-09203-3
    [10] 刘卫红, 张琪, 颜贤忠, 等. 高脂血症及动脉粥样硬化痰瘀演变的代谢组学研究[J]. 中医杂志, 2008, 49(8): 738-741. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ200808043.htm

    LIU WH, ZHANG Q, YAN XZ, et al. Metabonomics study on phlegm and blood stasis evolution of hyperlipidemia and atherosclerosis[J]. J Tradit Chin Med, 2008, 49(8): 738-741. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ200808043.htm
    [11] KUSHIYAMA A, NAKATSU Y, MATSUNAGA Y, et al. Role of uric acid metabolism-related inflammation in the pathogenesis of metabolic syndrome components such as atherosclerosis and nonalcoholic steatohepatitis[J]. Mediators Inflamm, 2016, 2016: 8603164.
    [12] CORRY DB, ESLAMI P, YAMAMOTO K, et al. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin-angiotensin system[J]. J Hypertens, 2008, 26(2): 269-275. doi: 10.1097/HJH.0b013e3282f240bf
    [13] 庞博, 越晧, 王恩鹏, 等. 动脉粥样硬化患者尿液的代谢组学研究[J]. 分析化学, 2015, 43(11): 1766-1771. doi: 10.11895/j.issn.0253-3820.150434

    PANG B, YUE H, WANG EP, et al. A metabonomics study of atherosclerosis by rapid resolution liquid chromatography quadrupole time-of-flight mass spectrometry[J]. Chin J Anal Chem, 2015, 43(11): 1766-1771. doi: 10.11895/j.issn.0253-3820.150434
    [14] PEDERSEN ER, MIDTTUN O, UELAND PM, et al. Systemic markers of interferon-γ-mediated immune activation and long-term prognosis in patients with stable coronary artery disease[J]. Arterioscler Thromb Vasc Biol, 2011, 31(3): 698-704. doi: 10.1161/ATVBAHA.110.219329
    [15] BROWN JM, HAZEN SL. The gut microbial endocrine organ: Bacterially derived signals driving cardiometabolic diseases[J]. Annu Rev Med, 2015, 66: 343-359. doi: 10.1146/annurev-med-060513-093205
    [16] WANG ZN, ROBERTS AB, BUFFA JA, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis[J]. Cell, 2015, 163(7): 1585-1595. doi: 10.1016/j.cell.2015.11.055
    [17] KOETH RA, LEVISON BS, CULLEY MK, et al. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO[J]. Cell Metab, 2014, 20(5): 799-812. doi: 10.1016/j.cmet.2014.10.006
    [18] AGUILAR EC, DA SILVA JF, NAVIA-PELAEZ JM, et al. Sodium butyrate modulates adipocyte expansion, adipogenesis, and insulin receptor signaling by upregulation of PPAR-γ in obese Apo E knockout mice[J]. Nutrition, 2018, 47: 75-82. doi: 10.1016/j.nut.2017.10.007
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  171
  • HTML全文浏览量:  46
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-18
  • 发布日期:  2022-05-10

目录

    /

    返回文章
    返回