留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

香砂六君子汤调控CircRNA-0067835对脾虚高脂血症大鼠胆固醇外排的影响

孟嘉伟 宋囡 王莹 陈丝 王群 赵秋宇 贾连群

孟嘉伟, 宋囡, 王莹, 陈丝, 王群, 赵秋宇, 贾连群. 香砂六君子汤调控CircRNA-0067835对脾虚高脂血症大鼠胆固醇外排的影响[J]. 南京中医药大学学报, 2022, 38(2): 147-153. doi: 10.14148/j.issn.1672-0482.2022.0147
引用本文: 孟嘉伟, 宋囡, 王莹, 陈丝, 王群, 赵秋宇, 贾连群. 香砂六君子汤调控CircRNA-0067835对脾虚高脂血症大鼠胆固醇外排的影响[J]. 南京中医药大学学报, 2022, 38(2): 147-153. doi: 10.14148/j.issn.1672-0482.2022.0147
MENG Jia-wei, SONG Nan, WANG Ying, CHEN Si, WANG Qun, ZHAO Qiu-yu, JIA Lian-qun. Effect of Xiangsha Liujunzi Decoction Regulating CircRNA-0067835 on Cholesterol Efflux in Hyperlipidemia Rats with Spleen Deficiency[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(2): 147-153. doi: 10.14148/j.issn.1672-0482.2022.0147
Citation: MENG Jia-wei, SONG Nan, WANG Ying, CHEN Si, WANG Qun, ZHAO Qiu-yu, JIA Lian-qun. Effect of Xiangsha Liujunzi Decoction Regulating CircRNA-0067835 on Cholesterol Efflux in Hyperlipidemia Rats with Spleen Deficiency[J]. Journal of Nanjing University of traditional Chinese Medicine, 2022, 38(2): 147-153. doi: 10.14148/j.issn.1672-0482.2022.0147

香砂六君子汤调控CircRNA-0067835对脾虚高脂血症大鼠胆固醇外排的影响

doi: 10.14148/j.issn.1672-0482.2022.0147
基金项目: 

国家自然科学基金面上项目 82074145

辽宁省“兴辽英才计划”项目 XLYC1902100

辽宁省科学技术计划项目 2019-ZD-0436

详细信息
    作者简介:

    孟嘉伟, 女, 硕士研究生, E-mail: 458973701@qq.com

    通讯作者:

    贾连群, 女, 教授, 博士生导师, 主要从事中西医结合防治心血管疾病研究, E-mail: jlq-8@163.com

  • 中图分类号: R285.5

Effect of Xiangsha Liujunzi Decoction Regulating CircRNA-0067835 on Cholesterol Efflux in Hyperlipidemia Rats with Spleen Deficiency

  • 摘要:   目的  探讨香砂六君子汤对脾虚高脂血症大鼠脂质沉积的影响及分子生物学机制。  方法  30只SD大鼠随机分成空白对照组、高脂组、脾虚高脂组、香砂六君子汤高剂量组及香砂六君子汤正常剂量组。使用不节饮食加游泳直至力竭的复合方法15 d, 建立脾虚模型。随后饲喂高脂饲料10周, 检测大鼠血脂水平, 确定高脂血症模型复制成功后, 香砂六君子汤高剂量组及正常剂量组分别给予香砂六君子汤11.34、5.67 g·kg-1·d-1灌胃, 其余3组给予相应体积的生理盐水灌胃, 4周后取材。检测5组大鼠血脂水平。HE染色观察肝脏病理变化。qPCR法检测CircRNA-0067835、miR-155基因水平。qPCR及Western blot法检测PPARγ、LXR、ABCA1、ABCG1 mRNA及蛋白表达水平。  结果  与空白对照组比较, 高脂组和脾虚高脂组HE染色可见明显肿胀的肝脏细胞以及清晰的脂肪空泡, 血清TC、TG、LDL-C水平以及miR-155基因表达升高(P < 0.01), HDL-C水平, CircRNA-0067835基因表达,PPARγ、LXR、ABCA1、ABCG1 mRNA和蛋白表达均降低(P < 0.05,P < 0.01)。相较于脾虚高脂组, 香砂六君子汤高剂量组及正常剂量组TC、TG和LDL-C水平显著降低(P < 0.01), HDL-C水平显著升高(P < 0.01), 肿胀的肝脏细胞得到明显改善、脂肪空泡减少, miR-155表达降低(P < 0.01), CircRNA-0067835表达升高(P < 0.01), PPARγ、LXR、ABCA1、ABCG1 mRNA及蛋白表达均升高(P < 0.05,P < 0.01)。香砂六君子汤高剂量组与正常剂量组之间部分存在统计学意义(P < 0.05, P < 0.01)。  结论  香砂六君子汤可能通过影响CircRNA-0067835调节PPARγ介导的胆固醇外排过程改善高脂血症大鼠胆固醇代谢异常, 进而起到防治血脂异常的作用。

     

  • 图  1  各组大鼠肝脏组织病理形态比较(HE, ×200)

    Figure  1.  Comparison of pathological morphology of liver tissues in each group(HE, ×200)

    图  2  各组大鼠肝脏组织脂质沉积情况比较(油红O, ×200)

    Figure  2.  Comparison of lipid deposition of liver tissues in each group (Oil red O, ×200)

    图  3  各组大鼠肝脏CircRNA-0067835、miR-155与PPARγ、LXR、ABCA1、ABCG1 mRNA表达的比较

    注: 与空白对照组比较, **P < 0.01;与脾虚高脂组比较, ▲▲P < 0.01;与香砂六君子汤正常剂量组比较, △△P < 0.01。x±s, n=3。

    Figure  3.  The expressions of CircRNA-0067835, miR-155 and PPARγ, LXR, ABCA1, ABCG1 mRNA in each group

    图  4  各组大鼠肝脏PPARγ、LXR、ABCA1、ABCG1蛋白表达的比较

    与空白对照组比较,*P < 0.05, **P < 0.01;与脾虚高脂组比较,▲▲P < 0.01。x±s, n=3。

    Figure  4.  The expressions of PPARγ, LXR, ABCA1, ABCG1 in each group

    表  1  qPCR引物序列

    Table  1.   The qPCR primer sequence

    基因 引物序列 长度/
    bp
    CircRNA- 上游: GTTTCATACTTTACGCTTGT 734
    0067835 下游: GCCTGGGTTTGTTTCT
    PPARγ 上游: ACCACTCGCATTCCTTTGAC 156
    下游: TGATCGCACTTTGGTATTCTTG
    LXR 上游: AGACCAGGGAGGCAACACTT 157
    下游: CTTTTGTGGACGAAGCTCTG
    ABCA1 上游: GAGCAAAGCCAAGCATCTTC 172
    下游: TAGAACGGGCAGGTTGGTAG
    ABCG1 上游: CTGTGCGTTTTGTGCTGTTC 185
    下游: GTAGGCTGGGATGGTGTCAA
    GAPDH 上游GTGTTTCCTCGTCCCGTAGA 202
    下游CCTTGACTGTGCCGTTGAAT
    miR-155 GGCCTCCTACCTGTTAGCATTAA -
    U6 上游: CTCGCTTCGGCAGCACATATACT -
    下游: ACGCTTCACGAATTTGCGTGTC
    下载: 导出CSV

    表  2  各组大鼠血脂水平比较(x±s, mmol·L-1, n=6)

    Table  2.   The comparison of serum lipid levels in each group(x±s, mmol·L-1, n=6)

    TC TG LDL-C HDL-C
    空白对照组 1.28±0.02 0.41±0.02 0.19±0.2 1.24±0.03
    高脂组 1.65±0.02** 0.65±0.02** 0.33±0.03** 0.93±0.03**
    脾虚高脂组 1.75±0.03** 0.73±0.02** 0.38±0.02** 0.80±0.06**
    香砂六君子汤高剂量组 1.48±0.04▲▲△△ 0.51±0.02▲▲ 0.23±0.02▲▲△ 1.13±0.03▲▲△
    香砂六君子汤正常剂量组 1.57±0.02▲▲ 0.52±0.01▲▲ 0.27±0.02▲▲ 1.05±0.03▲▲
    注: 与空白对照组比较, **P < 0.01;与脾虚高脂组比较, ▲▲P < 0.01;与香砂六君子汤正常剂量组比较, P < 0.05, △△P < 0.01。
    下载: 导出CSV
  • [1] YANG WY, XIAO JZ, YANG ZJ, et al. Serum lipids and lipoproteins in Chinese men and women[J]. Circulation, 2012, 125(18): 2212-2221. doi: 10.1161/CIRCULATIONAHA.111.065904
    [2] 李中梓. 医宗必读[M]. 王卫, 张艳军, 徐力, 等点校. 天津: 天津科学技术出版社, 1999: 349.

    LI ZZ. Required Readings from the Medical Ancestors[M]. WANG W, ZHANG YJ, XU L, et al, collated. Tianjin: Tianjin science and technology press, 1999: 349.
    [3] 朱美林. 脾虚状态对高脂血症大鼠肝脏脂质沉积的影响及机制研究[D]. 沈阳: 辽宁中医药大学, 2016.

    ZHU ML. The effect and mechanism of spleen virtual state on liver lipid deposition in rats with hyperlipidemia[D]. Shenyang: Liaoning University of Traditional Chinese Medicine, 2016.
    [4] 陈丝, 宋囡, 崔馨月, 等. 香砂六君子汤对脾虚高脂血症模型大鼠胆固醇逆向转运的影响[J]. 中医杂志, 2019, 60(17): 1493-1498. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ201917013.htm

    CHEN S, SONG N, CUI XY, et al. Effect of Xiangsha Liujunzi Decoction on reverse cholesterol transport of spleen deficiency and hyperlipidemia model rats[J]. J Tradit Chin Med, 2019, 60(17): 1493-1498. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZYZ201917013.htm
    [5] 陈丝, 贾连群, 宋囡, 等. 香砂六君子汤对脾虚高脂血症大鼠dyHDL的影响[J]. 中国实验方剂学杂志, 2019, 25(7): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201907039.htm

    CHEN S, JIA LQ, SONG N, et al. Effect of Xiangsha Liu junzitang on dyHDL in hyperlipidemia rats with spleen deficiency[J]. Chin J Exp Tradit Med Formulae, 2019, 25(7): 22-28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSFX201907039.htm
    [6] MENG XY, GUO J, FANG WW, et al. Liver microRNA-291b-3p promotes hepatic lipogenesis through negative regulation of adenosine 5'-monophosphate (AMP)-activated protein kinase α1[J]. J Biol Chem, 2016, 291(20): 10625-10634. doi: 10.1074/jbc.M116.713768
    [7] MATTIS AN, SONG GS, HITCHNER K, et al. A screen in mice uncovers repression of lipoprotein lipase by microRNA-29a as a mechanism for lipid distribution away from the liver[J]. Hepatology, 2015, 61(1): 141-152. doi: 10.1002/hep.27379
    [8] LI XL, LIAN FZ, LIU C, et al. Isocaloric pair-fed high-carbohydrate diet induced more hepatic steatosis and inflammation than high-fat diet mediated by miR-34a/SIRT1 axis in mice[J]. Sci Rep, 2015, 5: 16774. doi: 10.1038/srep16774
    [9] ZHANG CZ, CHEN KC, WEI RL, et al. The circFASN/miR-33a pathway participates in tacrolimus-induced dysregulation of hepatic triglyceride homeostasis[J]. Signal Transduct Target Ther, 2020, 5(1): 23. doi: 10.1038/s41392-020-0105-2
    [10] 王晓明, 易杰, 廖世新, 等. 脾虚证动物模型的客观评估[J]. 中华中医药杂志, 2006, 21(7): 406-408. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY200607007.htm

    WANG XM, YI J, LIAO SX, et al. Objective evaluation on spleen deficiency syndrome animal models[J]. China J Tradit Chin Med Pharm, 2006, 21(7): 406-408. https://www.cnki.com.cn/Article/CJFDTOTAL-BXYY200607007.htm
    [11] 陈奇. 中药药理实验方法学[M]. 北京: 人民卫生出版社, 1994: 205-208.

    CHEN Q. Pharmacological Experiment Methodology of Chinese Medicine[M]. Beijing: People's health publishing house, 1994: 205-208.
    [12] 郎卿, 虞芳华. 303例代谢综合征中医证候特征分析[J]. 上海中医药杂志, 2010, 44(10): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SHZZ201010014.htm

    LANG Q, YU FH. Characteristics of Chinese medical pattern of metabolic syndrome in 303 patients[J]. Shanghai J Tradit Chin Med, 2010, 44(10): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-SHZZ201010014.htm
    [13] WANG XP, GUO H, LI Y, et al. Interactions among genes involved in reverse cholesterol transport and in the response to environmental factors in dyslipidemia in subjects from the Xinjiang rural area[J]. PLoS ONE, 2018, 13(5): e0196042. doi: 10.1371/journal.pone.0196042
    [14] HAN T, LV YG, WANG SJ, et al. PPARγ overexpression regulates cholesterol metabolism in human L02 hepatocytes[J]. J Pharmacol Sci, 2019, 139(1): 1-8. doi: 10.1016/j.jphs.2018.09.013
    [15] SHARMA AM, STAELS B. Peroxisome proliferator-activated receptor gamma and adipose tissue-understanding obesity-related changes in regulation of lipid and glucose metabolism[J]. J Clin Endocrinol Metab, 2007, 92(2): 386-395. doi: 10.1210/jc.2006-1268
    [16] CHEN BJ, BYRNE FL, TAKENAKA K, et al. Analysis of the circular RNA transcriptome in endometrial cancer[J]. Oncotarget, 2017, 9(5): 5786-5796.
    [17] ZHOU J, XIONG QM, CHEN HT, et al. Identification of the spinal expression profile of non-coding RNAs involved in neuropathic pain following spared nerve injury by sequence analysis[J]. Front Mol Neurosci, 2017, 10: 91.
    [18] YU GL, YANG Z, PENG TH, et al. Circular RNAs: Rising stars in lipid metabolism and lipid disorders[J]. J Cell Physiol, 2021, 236(7): 4797-4806. doi: 10.1002/jcp.30200
    [19] ZHU LL, REN TT, ZHU ZX, et al. Thymosin-β4 mediates hepatic stellate cell activation by interfering with CircRNA-0067835/miR-155/FoxO3 signaling pathway[J]. Cell Physiol Biochem, 2018, 51(3): 1389-1398. doi: 10.1159/000495556
    [20] KIM MJ, LEE YJ, YOON YS, et al. Apoptotic cells trigger the ABCA1/STAT6 pathway leading to PPAR-γ expression and activation in macrophages[J]. J Leukoc Biol, 2018, 103(5): 885-895. doi: 10.1002/JLB.2A0817-341RR
    [21] MAJDALAWIEH A, RO HS. PPARgamma1 and LXRalpha face a new regulator of macrophage cholesterol homeostasis and inflammatory responsiveness, AEBP1[J]. Nucl Recept Signal, 2010, 8: e004.
    [22] SCHUMACHER T, BENNDORF RA. ABC transport proteins in cardiovascular disease-A brief summary[J]. Molecules, 2017, 22(4): 589. doi: 10.3390/molecules22040589
    [23] WESTERTERP M, BOCHEM AE, YVAN-CHARVET L, et al. ATP-binding cassette transporters, atherosclerosis, and inflammation[J]. Circ Res, 2014, 114(1): 157-170. doi: 10.1161/CIRCRESAHA.114.300738
    [24] MIROSHNIKOVA VV, DEMINA EP, MAǏOROV NV, et al. ABCG1 transporter gene expression in peripheral blood mononuclear cells of patients with atherosclerosis[J]. Tsitologiia, 2014, 56(3): 234-240.
    [25] DEMINA EP, MIROSHNIKOVA VV, SCHWARZMAN AL. Role of the ABC transporters A1 and G1, key reverse cholesterol transport proteins, in atherosclerosis[J]. Mol Biol, 2016, 50(2): 223-230.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  187
  • HTML全文浏览量:  64
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-23
  • 网络出版日期:  2022-03-01
  • 发布日期:  2022-02-10

目录

    /

    返回文章
    返回